1
|
Kempin MV, Schroeder H, Hohl L, Kraume M, Drews A. Modeling of water-in-oil Pickering emulsion nanofiltration - Influence of temperature. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2
|
Marecka-Migacz A, Mitkowski PT, Nędzarek A, Różański J, Szaferski W. Effect of pH on Total Volume Membrane Charge Density in the Nanofiltration of Aqueous Solutions of Nitrate Salts of Heavy Metals. MEMBRANES 2020; 10:E235. [PMID: 32937943 PMCID: PMC7558355 DOI: 10.3390/membranes10090235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
The separation efficiencies of aqueous solutions containing nitric salts of Zn, Cu, Fe or Pb at various pH in process of nanofiltration have been investigated experimentally. These results were used to obtain the total volume membrane charge densities, through mathematical modelling based on the Donnan-Steric partitioning Model. The experimentally obtained retention values of individual heavy metal ions varied between 36% (Zn2+ at pH = 2), 57% (Pb2+ at pH = 2), 80% (Fe3+ at pH = 9), and up to 97% (Cu2+ at pH = 9). The mathematical modelling allowed for fitting the total volume membrane charge density (Xd), which yielded values ranging from -451.90 to +900.16 mol/m3 for different non-symmetric ions. This study presents the application of nanofiltration (NF) modelling, including a consideration of each ion present in the NF system-even those originating from solutions used to adjust the pH values of the feed.
Collapse
Affiliation(s)
- Agata Marecka-Migacz
- Division of Chemical Engineering and Equipment, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznań, Poland; (A.M.-M.); (J.R.); (W.S.)
| | - Piotr Tomasz Mitkowski
- Division of Chemical Engineering and Equipment, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznań, Poland; (A.M.-M.); (J.R.); (W.S.)
| | - Arkadiusz Nędzarek
- Department of Aquatic Bioengineering and Aquaculture, West Pomeranian University of Technology in Szczecin, 71-550 Szczecin, Poland;
| | - Jacek Różański
- Division of Chemical Engineering and Equipment, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznań, Poland; (A.M.-M.); (J.R.); (W.S.)
| | - Waldemar Szaferski
- Division of Chemical Engineering and Equipment, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznań, Poland; (A.M.-M.); (J.R.); (W.S.)
| |
Collapse
|
3
|
|
4
|
Minelli M, Sarti GC. Modeling mass transport in dense polymer membranes: cooperative synergy among multiple scale approaches. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Schnoor JK, Fuchs M, Böcking A, Wessling M, Liauw MA. Homogeneous Catalyst Recycling and Separation of a Multicomponent Mixture Using Organic Solvent Nanofiltration. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Johann-Kilian Schnoor
- RWTH Aachen UniversityInstitut für Technische und Makromolekulare Chemie Worringerweg 1 52074 Aachen Germany
| | - Martin Fuchs
- RWTH Aachen UniversityInstitut für Anorganische Chemie Landoltweg 1a 52074 Aachen Germany
| | - Axel Böcking
- RWTH Aachen UniversityAachener Verfahrenstechnik, Chemische Verfahrenstechnik Forckenbeckstrasse 51 52074 Aachen Germany
| | - Matthias Wessling
- RWTH Aachen UniversityAachener Verfahrenstechnik, Chemische Verfahrenstechnik Forckenbeckstrasse 51 52074 Aachen Germany
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Marcel A. Liauw
- RWTH Aachen UniversityInstitut für Technische und Makromolekulare Chemie Worringerweg 1 52074 Aachen Germany
| |
Collapse
|
6
|
Hong J, Kawashima A, Okamoto M, Hamada N. Evaluation of membrane filtration for cleanup in multi-residue pesticide analysis of spinach. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
de Melo JRM, Tiggeman L, Rezzadori K, Steffens J, Palliga M, Oliveira JV, Di Luccio M, Tres MV. Desolventizing of soybean oil/azeotrope mixtures using ceramic membranes. ENVIRONMENTAL TECHNOLOGY 2017; 38:1969-1979. [PMID: 27735225 DOI: 10.1080/09593330.2016.1242658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
This work investigates the use of ceramic membranes with different molecular weight cut-offs (MWCOs: 5, 10 and 20 kDa) to desolventize azeotropic solvent mixtures (ethanol/n-hexane and isopropyl alcohol/n-hexane) from soybean oil/azeotrope micelles. Results show that a decrease in the MWCO of a membrane and an increase in the solvent mass ratio in the mixture resulted in a significant reduction in the permeate flux. The 20 kDa membrane presented the highest permeate flux, 80 and 60 kg/m2h for the soybean oil/n-hexane/isopropyl alcohol and soybean oil/n-hexane/ethanol azeotropes, respectively, for an oil to solvent ratio of 1:3 (w/w). The highest oil retention was found using the n-hexane/isopropyl alcohol azeotrope, around 25% in the membrane with the lowest MWCO, that is, 5 kDa. It is shown that the azeotropic mixtures provided intermediate characteristics compared to the original pure solvent behavior.
Collapse
Affiliation(s)
| | - Lidia Tiggeman
- b Department of Chemical and Food Engineering , UFSC , Florianópolis , Brazil
| | - Katia Rezzadori
- b Department of Chemical and Food Engineering , UFSC , Florianópolis , Brazil
| | - Juliana Steffens
- a Department of Food Engineering , URI Erechim , Erechim , Brazil
| | - Marshall Palliga
- a Department of Food Engineering , URI Erechim , Erechim , Brazil
| | - J Vladimir Oliveira
- b Department of Chemical and Food Engineering , UFSC , Florianópolis , Brazil
| | - Marco Di Luccio
- b Department of Chemical and Food Engineering , UFSC , Florianópolis , Brazil
| | - Marcus V Tres
- a Department of Food Engineering , URI Erechim , Erechim , Brazil
- c UFSM , Cachoeira do Sul , Brazil
| |
Collapse
|
8
|
|
9
|
Firman L, Ochoa NA, Marchese J, Pagliero C. Simultaneous improvement in solvent permeability and deacidification of soybean oil by nanofiltration. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:398-407. [PMID: 28242939 DOI: 10.1007/s13197-016-2476-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/07/2016] [Accepted: 12/29/2016] [Indexed: 11/28/2022]
Abstract
In this paper, soybean oil deacidification and hexane removal using laboratory scale solvent resistance nanofiltration membranes based technique is presented. Composite nanofiltration membranes made of different polymers poly(vinylideneflouride) (PVDF), polydimethylsiloxane (SI), polycarbonate (PC), and glycerol were tested to remove the hexane and free fatty acid (FFA) from soybean oil/hexane miscella (oil feed solution 10, 25, and 35% w/w) at 20 bar of transmembrane pressure and 30 °C, in a dead-end filtration set up. All membranes tested showed low fouling phenomena and high stability in the presence of hexane throughout the membrane pre-treatment and permeation procedure. The PVDF-10SI-1PC membrane showed the best performance achieving a miscella permeability of Lm = 6.8 × 10-6 L (h m bar)-1, oil and FFA sieving efficiency of β(oil) = 0.21(80% of oil rejection) and βFFA = 2.43 (27% of FFA removal), respectively, at oil feed concentration of 25%. Apart from these specific properties, the PVDF-10SI-1PC membrane presented excellent mechanical and chemical resistances and low reversible fouling. The results demonstrate that membrane technology can attain a high efficiency in the simultaneous solvent recovery and deacidification of oil/hexane miscella commonly processed in the soybean oil industry.
Collapse
Affiliation(s)
- L Firman
- Dpto. de Tecnología Química, Facultad de Ingeniería, UNRC -CONICET-FONCYT, Ruta No. 36, Km 601, 5800 Río Cuarto, Argentina
| | - N A Ochoa
- INFAP-CONICET-FONCYT, Universidad Nacional de San Luis, Chacabuco 915, 5700 San Luis, Argentina
| | - J Marchese
- INFAP-CONICET-FONCYT, Universidad Nacional de San Luis, Chacabuco 915, 5700 San Luis, Argentina
| | - C Pagliero
- Dpto. de Tecnología Química, Facultad de Ingeniería, UNRC -CONICET-FONCYT, Ruta No. 36, Km 601, 5800 Río Cuarto, Argentina
| |
Collapse
|
10
|
Fundamental study of a novel membrane filtration cleanup method for pesticide analysis in agricultural products. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Micovic J, Werth K, Lutze P. Hybrid separations combining distillation and organic solvent nanofiltration for separation of wide boiling mixtures. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2014.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Marchetti P, Jimenez Solomon MF, Szekely G, Livingston AG. Molecular separation with organic solvent nanofiltration: a critical review. Chem Rev 2014; 114:10735-806. [PMID: 25333504 DOI: 10.1021/cr500006j] [Citation(s) in RCA: 855] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Patrizia Marchetti
- Department of Chemical Engineering and Chemical Technology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
13
|
Buonomenna MG, Bae J. Organic Solvent Nanofiltration in Pharmaceutical Industry. SEPARATION AND PURIFICATION REVIEWS 2014. [DOI: 10.1080/15422119.2014.918884] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Holtbruegge J, Kuhlmann H, Lutze P. Conceptual Design of Flowsheet Options Based on Thermodynamic Insights for (Reaction−)Separation Processes Applying Process Intensification. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502171q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johannes Holtbruegge
- Department of
Biochemical and Chemical Engineering, Laboratory of Fluid Separations, TU Dortmund University, Emil-Figge-Strasse 70, D-44227 Dortmund, Germany
| | - Hanns Kuhlmann
- Department of
Biochemical and Chemical Engineering, Laboratory of Fluid Separations, TU Dortmund University, Emil-Figge-Strasse 70, D-44227 Dortmund, Germany
| | - Philip Lutze
- Department of
Biochemical and Chemical Engineering, Laboratory of Fluid Separations, TU Dortmund University, Emil-Figge-Strasse 70, D-44227 Dortmund, Germany
| |
Collapse
|
15
|
Schmidt P, Bednarz EL, Lutze P, Górak A. Characterisation of Organic Solvent Nanofiltration membranes in multi-component mixtures: Process design workflow for utilising targeted solvent modifications. Chem Eng Sci 2014. [DOI: 10.1016/j.ces.2014.03.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Schmidt P, Micovic J, Lutze P, Górak A. Organophile Nanofiltration - Herausforderungen und Lösungsansätze zur Anwendung eines innovativen Membrantrennverfahrens. CHEM-ING-TECH 2014. [DOI: 10.1002/cite.201300153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Li J, Wang M, Huang Y, Luo B, Zhang Y, Yuan Q. Separation of binary solvent mixtures with solvent resistant nanofiltration membranes part B: process modeling. RSC Adv 2014. [DOI: 10.1039/c4ra04224g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This part B of a two paper series develops an improved model derived from the classical solution-diffusion model, specifically for solvent separation process in SRNF.
Collapse
Affiliation(s)
- Jiandong Li
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Miaomiao Wang
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Yucui Huang
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Beibei Luo
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Yuan Zhang
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| |
Collapse
|
18
|
Li J, Wang M, Huang Y, Luo B, Zhang Y, Yuan Q. Separation of binary solvent mixtures with solvent resistant nanofiltration membranes Part A: investigation of separation performance. RSC Adv 2014. [DOI: 10.1039/c4ra04222k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper is Part A of a two paper series seeking a systematical investigation of the feasibility of separating binary solvent mixtures with solvent resistant nanofiltration (SRNF) membranes.
Collapse
Affiliation(s)
- Jiandong Li
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Miaomiao Wang
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Yucui Huang
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Beibei Luo
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Yuan Zhang
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| |
Collapse
|
19
|
Lutze P, Gorak A. Reactive and membrane-assisted distillation: Recent developments and perspective. Chem Eng Res Des 2013. [DOI: 10.1016/j.cherd.2013.07.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|