1
|
Schwaar N, Benke D, Retsch M, Goedel WA. Float-Cast Microsieves with Elliptical Pores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22516-22525. [PMID: 39431684 PMCID: PMC11526378 DOI: 10.1021/acs.langmuir.4c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/16/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024]
Abstract
Polymeric microsieves bearing elliptical pores were successfully prepared via float-casting: a dispersion comprising nonvolatile acrylate monomers and ellipsoidal polystyrene particles was spread onto a water surface. The resulting self-organized monolayer was laterally compressed, and the monomer was photopolymerized, giving rise to a membrane comprising ellipsoidal particles laterally embedded in a 0.5 μm thin polymer membrane. The particles were dissolved, leaving behind elliptical pores. These pores had an average length of the major axis of 0.87 ± 0.1 μm and of the minor axis of 0.42 ± 0.07 μm and an aspect ratio of approximately 2. The microsieve bearing these submicrometric elliptical pores was transferred to a hierarchical structure made out of microsieves bearing circular pores of 6 μm diameter on top of a microsieve with 70 μm diameter pores. The resulting hierarchically structured microsieve had a porosity of 0.13. At a pressure difference of typically 103 Pa (Reynolds number aprox. 0.002), the volumetric permeance for water was Pe = V ˙ /A/Δp = 0.5·10-6 m/s/Pa, the product viscosity·permeance is η·V ˙ /A/Δp = 0.5·10-9 m. This value is lower than the corresponding values of microsieves with circular pores of similar diameter produced by the same technique. The beneficial effects of higher permeance per pore caused by the elliptical shape are countered by lower porosity caused by less efficient packing of the ellipsoidal particles.
Collapse
Affiliation(s)
- Nadine Schwaar
- Chemnitz
University of Technology, Physical Chemistry, Straße der Nationen 62, 09116 Chemnitz, Germany
| | - Dominik Benke
- University
Bayreuth, Department of Chemistry,
Chair of Physical Chemistry I, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Markus Retsch
- University
Bayreuth, Department of Chemistry,
Chair of Physical Chemistry I, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian
Polymer Institute, Bayreuth Center for Colloids and Interfaces, and
Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Werner A. Goedel
- Chemnitz
University of Technology, Physical Chemistry, Straße der Nationen 62, 09116 Chemnitz, Germany
| |
Collapse
|
2
|
Sun M, Han K, Hu R, Liu D, Fu W, Liu W. Advances in Micro/Nanoporous Membranes for Biomedical Engineering. Adv Healthc Mater 2021; 10:e2001545. [PMID: 33511718 DOI: 10.1002/adhm.202001545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Porous membrane materials at the micro/nanoscale have exhibited practical and potential value for extensive biological and medical applications associated with filtration and isolation, cell separation and sorting, micro-arrangement, in-vitro tissue reconstruction, high-throughput manipulation and analysis, and real-time sensing. Herein, an overview of technological development of micro/nanoporous membranes (M/N-PMs) is provided. Various membrane types and the progress documented in membrane fabrication techniques, including the electrochemical-etching, laser-based technology, microcontact printing, electron beam lithography, imprinting, capillary force lithography, spin coating, and microfluidic molding are described. Their key features, achievements, and limitations associated with micro/nanoporous membrane (M/N-PM) preparation are discussed. The recently popularized applications of M/N-PMs in biomedical engineering involving the separation of cells and biomolecules, bioparticle operations, biomimicking, micropatterning, bioassay, and biosensing are explored too. Finally, the challenges that need to be overcome for M/N-PM fabrication and future applications are highlighted.
Collapse
Affiliation(s)
- Meilin Sun
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Kai Han
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Rui Hu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Dan Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenzhu Fu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenming Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| |
Collapse
|
3
|
Buchsbaum J, Ranis S, Angelow K, Linden S, Tegenkamp C, Goedel WA. Hierarchically Structured Microsieves Produced via Float-Casting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2040-2055. [PMID: 33524261 DOI: 10.1021/acs.langmuir.0c02936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article shows a new way to produce hierarchical microsieves by layering three types of float-cast microsieves, differing from each other in their pore diameters (approximately 68 μm, 7 μm, and 0.24 μm) on top of each other. The unsupported microsieves with 7 and 0.24 μm pore sizes are mechanically fragile. The complete hierarchical sieve composed of all three layers, however, can be handled manually without special precaution. This article further investigates the flow through the hierarchical sieve and filtration via experiment, theory (Hagen-Poiseuille's and Sampson-Roscoe's law), and simulation (numerically solving the Navier-Stokes equations for a predefined set of discrete volumetric elements). The experimental, theoretical, and simulated permeances of the microsieves and the hierarchical sieves are in reasonable agreement with each other and are significantly higher than the permeances of conventional filtration media. In filtration experiments, the hierarchical sieves show the expected sharp size cut-off, retaining particles of diameters exceeding the pore diameter.
Collapse
Affiliation(s)
- Julia Buchsbaum
- Physical Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Stephan Ranis
- Physical Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
| | | | - Sven Linden
- Math2Market, Richard-Wagner-Straße 1, 67655 Kaiserslautern, Germany
| | - Christoph Tegenkamp
- Analytics on Solid Surfaces, Chemnitz University of Technology, Reichenhainer Straße 70, 09126 Chemnitz, Germany
| | - Werner A Goedel
- Physical Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
4
|
Goedel WA, Gläser K, Mitra D, Hammerschmidt J, Thalheim R, Ueberfuhr P, Baumann RR. Printing Reinforcing Structures onto Microsieves That Are Floating on a Water Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2196-2208. [PMID: 30590922 DOI: 10.1021/acs.langmuir.8b03252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This article describes the preparation of hierarchically structured microsieves via a suitable combination of float-casting and inkjet-printing: A mixture of hydrophobized silica particles of 600 nm ± 20 nm diameter, a suitable non-water-soluble nonvolatile acrylic monomer, a nonvolatile photoinitiator, and volatile organic solvents is applied to a water surface. This mixture spontaneously spreads on the water surface; the volatile solvents evaporate and leave behind a layer of the monomer/initiator mixture comprising a monolayer of particles, each particle protruding out of the monomer layer at the top and bottom surface. Photopolymerization of the monomer converts this mixed layer into a solid composite membrane floating on the water surface. Onto this membrane, while still floating on the water surface, a hierarchical reinforcing structure based on a photocurable ink is inkjet-printed and solidified. In contrast to the nonreinforced membrane, the reinforced membrane can easily be lifted off the water surface without suffering damage. Subsequently, the silica particles are removed, and thus, the reinforced composite membrane is converted into a reinforced microsieve of 350 nm ± 50 nm thickness bearing uniform through pores of 465 nm ± 50 nm diameter. This reinforced microsieve is mounted into a filtration unit and used to filter model dispersions: its permeance for water at low Reynolds numbers is in accordance with established theories on the permeance of microsieves and significantly above the permeance of conventional filtration media; it retains particles exceeding the pore size, while letting particles smaller than the pore size pass.
Collapse
Affiliation(s)
- Werner A Goedel
- Physical Chemistry , Chemnitz University of Technology , Straße der Nationen 62 , 09111 Chemnitz , Germany
| | - Kerstin Gläser
- Physical Chemistry , Chemnitz University of Technology , Straße der Nationen 62 , 09111 Chemnitz , Germany
| | - Dana Mitra
- Department of Digital Printing and Imaging Technology , Chemnitz University of Technology , Reichenhainer Straße 70 , 09126 Chemnitz , Germany
| | - Jens Hammerschmidt
- Department of Digital Printing and Imaging Technology , Chemnitz University of Technology , Reichenhainer Straße 70 , 09126 Chemnitz , Germany
| | - Robert Thalheim
- Department of Digital Printing and Imaging Technology , Chemnitz University of Technology , Reichenhainer Straße 70 , 09126 Chemnitz , Germany
| | - Peter Ueberfuhr
- Department of Digital Printing and Imaging Technology , Chemnitz University of Technology , Reichenhainer Straße 70 , 09126 Chemnitz , Germany
| | - Reinhard R Baumann
- Department of Digital Printing and Imaging Technology , Chemnitz University of Technology , Reichenhainer Straße 70 , 09126 Chemnitz , Germany
| |
Collapse
|
5
|
Alibakhshian F, Pourafshari Chenar M, Asghari M. Thin film composite membranes with desirable support layer for MeOH/MTBE pervaporation. J Appl Polym Sci 2019. [DOI: 10.1002/app.47519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Farzaneh Alibakhshian
- Separation Process Research Group (SPRG), Department of Engineering; University of Kashan; Kashan Iran
| | - Mahdi Pourafshari Chenar
- Chemical Engineering Department, Faculty of Engineering; Ferdowsi University of Mashhad; Mashhad Iran
- Research Center of Membrane Processes and Membrane, Faculty of Engineering; Ferdowsi University of Mashhad; Mashhad Iran
| | - Morteza Asghari
- Separation Process Research Group (SPRG), Department of Engineering; University of Kashan; Kashan Iran
- Energy Research Institute, University of Kashan; Ghotb-e-Ravandi Ave., Kashan Iran
| |
Collapse
|
6
|
Hernández-Castro JA, Li K, Meunier A, Juncker D, Veres T. Fabrication of large-area polymer microfilter membranes and their application for particle and cell enrichment. LAB ON A CHIP 2017; 17:1960-1969. [PMID: 28443860 DOI: 10.1039/c6lc01525e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A vacuum assisted UV micro-molding (VAUM) process is proposed for the fabrication of freestanding and defect-free polymer membranes based on a UV-curable methacrylate polymer (MD 700). VAUM is a highly flexible and powerful method for fabricating low cost, robust, large-area membranes over 9 × 9 cm2 with pore sizes from 8 to 20 μm in diameter, 20 to 100 μm in thickness, high aspect ratio (the thickness of the polymer over the diameter of the hole is up to 15 : 1), high porosity, and a wide variety of geometrical characteristics. The fabricated freestanding membranes are flexible while mechanically robust enough for post manipulation and handling, which allows them to be cut and integrated as a plastic cartridge onto thermoplastic 3D microfluidic devices with single or double filtration stages. Very high particle capture efficiencies (≈98%) have been demonstrated in the microfluidic devices integrated with polymer membranes, even when the size of the beads is very close to the size of the pores of the microfilter. About 85% of the capture efficiency has been achieved in cancer cell trapping experiments, in which a breast cancer cell line (MDA-MB-231) spiked with phosphate-buffered saline buffer when the pore size of the filter is 8 μm and the device is operated at a flow rate of 0.1 mL min-1.
Collapse
|
7
|
Kallem P, Drobek M, Julbe A, Vriezekolk EJ, Mallada R, Pina MP. Hierarchical Porous Polybenzimidazole Microsieves: An Efficient Architecture for Anhydrous Proton Transport via Polyionic Liquids. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14844-14857. [PMID: 28437079 DOI: 10.1021/acsami.7b01916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Liquid-induced phase-separation micromolding (LIPSμM) has been successfully used for manufacturing hierarchical porous polybenzimidazole (HPBI) microsieves (42-46% porosity, 30-40 μm thick) with a specific pore architecture (pattern of macropores: ∼9 μm in size, perforated, dispersed in a porous matrix with a 50-100 nm pore size). Using these microsieves, proton-exchange membranes were fabricated by the infiltration of a 1H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide liquid and divinylbenzene (as a cross-linker), followed by in situ UV polymerization. Our approach relies on the separation of the ion conducting function from the structural support function. Thus, the polymeric ionic liquid (PIL) moiety plays the role of a proton conductor, whereas the HPBI microsieve ensures the mechanical resistance of the system. The influence of the porous support architecture on both proton transport performance and mechanical strength has been specifically investigated by means of comparison with straight macroporous (36% porosity) and randomly nanoporous (68% porosity) PBI counterparts. The most attractive results were obtained with the poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide PIL cross-linked with 1% divinylbenzene supported on HPBI membranes with a 21-μm-thick skin layer, achieving conductivity values up to 85 mS cm-1 at 200 °C under anhydrous conditions and in the absence of mineral acids.
Collapse
Affiliation(s)
- Parashuram Kallem
- Department of Chemical & Environmental Engineering, Institute of Nanoscience of Aragon, University of Zaragoza, Edif. I+D+i , Campus Rio Ebro, C/Mariano Esquillor, 50018 Zaragoza, Spain
- IEM (Institut Européen des Membranes), UMR 5635 (CNRS-ENSCM-UM), Université de Montpellier , CC047, Place Eugène Bataillon, 34095 Montpellier, France
- Membrane Science & Technology, Mesa+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Martin Drobek
- IEM (Institut Européen des Membranes), UMR 5635 (CNRS-ENSCM-UM), Université de Montpellier , CC047, Place Eugène Bataillon, 34095 Montpellier, France
| | - Anne Julbe
- IEM (Institut Européen des Membranes), UMR 5635 (CNRS-ENSCM-UM), Université de Montpellier , CC047, Place Eugène Bataillon, 34095 Montpellier, France
| | - Erik J Vriezekolk
- Membrane Science & Technology, Mesa+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Institute of Nanoscience of Aragon, University of Zaragoza, Edif. I+D+i , Campus Rio Ebro, C/Mariano Esquillor, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , 28029 Madrid, Spain
| | - Maria Pilar Pina
- Department of Chemical & Environmental Engineering, Institute of Nanoscience of Aragon, University of Zaragoza, Edif. I+D+i , Campus Rio Ebro, C/Mariano Esquillor, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , 28029 Madrid, Spain
| |
Collapse
|
8
|
Li Z, Kang W, Zhao H, Hu M, Wei N, Qiu J, Cheng B. A Novel Polyvinylidene Fluoride Tree-Like Nanofiber Membrane for Microfiltration. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E152. [PMID: 28335279 PMCID: PMC5224614 DOI: 10.3390/nano6080152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/31/2016] [Accepted: 08/08/2016] [Indexed: 11/22/2022]
Abstract
A novel polyvinylidene fluoride (PVDF) tree-like nanofiber membrane (PVDF-TLNM) was fabricated by adding tetrabutylammonium chloride (TBAC) into a PVDF spinning solution via one-step electrospinning. The structure of the prepared membranes was characterized by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR) and pore size analysis, and the hydrophilic property and microfiltration performance were also evaluated. The results showed that the tree-like nanofiber was composed of trunk fibers and branch fibers with diameters of 100-500 nm and 5-100 nm, respectively. The pore size of PVDF-TLNM (0.36 μm) was smaller than that of a common nanofiber membrane (3.52 μm), and the hydrophilic properties of the membranes were improved significantly. The PVDF-TLNM with a thickness of 30 ± 2 μm showed a satisfactory retention ratio of 99.9% against 0.3 μm polystyrene (PS) particles and a high pure water flux of 2.88 × 10⁴ L·m-2·h-1 under the pressure of 25 psi. This study highlights the potential benefits of this novel PVDF tree-like nanofiber membrane in the membrane field, which can achieve high flux rates at low pressure.
Collapse
Affiliation(s)
- Zongjie Li
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Weimin Kang
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Huihui Zhao
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Min Hu
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Na Wei
- College of Packaging and Printing Engineering, Tianjin Vocational Institute, Tianjin 300387, China.
| | - Jiuan Qiu
- College of Packaging and Printing Engineering, Tianjin Vocational Institute, Tianjin 300387, China.
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
| |
Collapse
|