1
|
Tsai MY, Lin LC. Pervaporation Separation of Isopropanol/Water Using Zeolite Nanosheets: A Molecular Simulation Study. J Phys Chem B 2024; 128:8546-8556. [PMID: 39183642 PMCID: PMC11382281 DOI: 10.1021/acs.jpcb.4c04237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Reducing greenhouse gas emissions plays a crucial role in slowing down the rise of the global temperature. One of the viable options is to employ renewable energy sources such as alcohols that can be produced from biomass. Specifically, one of the most common alcohols is isopropanol (IPA). Energy-intensive distillation processes are however involved in its production because of the rather low product concentration from fermentation. Membrane technologies, specifically pervaporation (PV), represent a promising alternative to the IPA/water separation. Particularly, employing zeolite nanosheets as PV membranes may provide great opportunities to extract IPA owing to their ultrathin and hydrophobic nature. By employing molecular dynamics simulations, this study conducts a systematic study on a diverse set of nanosheet candidates with the aim of exploring their potential and identifying top-performing structures. The best candidate among structures studied herein is predicted to offer an exceptional IPA/water selectivity of more than 400 with an unprecedentedly large flux. Structure-property-performance relationships have also been established to offer insights into the rational design of PV membranes with improved performance.
Collapse
Affiliation(s)
- Ming-Yen Tsai
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Li-Chiang Lin
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Qiao Y, Xu S, Wu Y, Zhang L, Xie L. Dehydration of Organic Solvents from Ternary Mixtures Containing Toluene/Methanol/Water by Pervaporation. MEMBRANES 2024; 14:139. [PMID: 38921506 PMCID: PMC11205444 DOI: 10.3390/membranes14060139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
The separation of a toluene/methanol/water ternary mixture is a difficult task due to the toluene/water and toluene/methanol azeotropes. In this article, low-energy pervaporation is proposed for the separation of the ternary azeotrope toluene-methanol-water. This work investigates the effects of feed temperature, feed flow rate, and vacuum on pervaporation and compares the energy consumption of pervaporation with that of distillation. The results showed that at the optimized flow rate of 50 L/h and a permeate side vacuum of 60 kPa at 50 °C, the water and methanol content in the permeate was about 63.2 wt.% and 36.8 wt.%, respectively, the water/ methanol separation factor was 24.04, the permeate flux was 510.7 g/m2·h, the water content in the feed out was reduced from 2.5 wt.% to less than 0.66 wt.%, and the dehydration of toluene methanol could be realized. Without taking into account the energy consumption of pumps and other power equipment, pervaporation requires an energy consumption of 43.53 kW·h to treat 1 ton of raw material, while the energy consumption of distillation to treat 1 ton of raw material is about 261.5 kW·h. Compared to the existing distillation process, the pervaporation process consumes much less energy (about one-sixth of the energy consumption of distillation). There is almost no effect on the surface morphology and chemical composition of the membrane before and after use. The method provides an effective reference for the dehydration of organic solvents from ternary mixtures containing toluene/methanol/water.
Collapse
Affiliation(s)
| | - Shichang Xu
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.Q.); (Y.W.); (L.Z.)
| | | | | | - Lixin Xie
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.Q.); (Y.W.); (L.Z.)
| |
Collapse
|
3
|
Rabiee N, Sharma R, Foorginezhad S, Jouyandeh M, Asadnia M, Rabiee M, Akhavan O, Lima EC, Formela K, Ashrafizadeh M, Fallah Z, Hassanpour M, Mohammadi A, Saeb MR. Green and Sustainable Membranes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116133. [PMID: 37209981 DOI: 10.1016/j.envres.2023.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran.
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sahar Foorginezhad
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Lulea University of Technology, Department of Energy Science and Mathematics, Energy Science, 97187, Lulea, Sweden
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, P. O. Box 47416, 95447, Babolsar, Iran
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| |
Collapse
|
4
|
Kim P, Kwon Y, Lee M, Kim D, Park YI, Choi N, Nam SE, Choi J. LTA zeolite membranes on thin-walled capillary tubes for the high-throughput dehydration of industrially important ternary water/isopropanol/epichlorohydrin mixtures. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Poly(vinyl alcohol)/carbon nanotube (CNT) membranes for pervaporation dehydration: The effect of functionalization agents for CNT on pervaporation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Lakshmy KS, Lal D, Nair A, Babu A, Das H, Govind N, Dmitrenko M, Kuzminova A, Korniak A, Penkova A, Tharayil A, Thomas S. Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers (Basel) 2022; 14:polym14081604. [PMID: 35458354 PMCID: PMC9029804 DOI: 10.3390/polym14081604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pervaporation is one of the most active topics in membrane research, and it has time and again proven to be an essential component for chemical separation. It has been employed in the removal of impurities from raw materials, separation of products and by-products after reaction, and separation of pollutants from water. Given the global problem of water pollution, this approach is efficient in removing hazardous substances from water bodies. Conventional processes are based on thermodynamic equilibria involving a phase transition such as distillation and liquid-liquid extraction. These techniques have a relatively low efficacy and nowadays they are not recommended because it is not sustainable in terms of energy consumption and/or waste generation. Pervaporation emerged in the 1980s and is now becoming a popular membrane separation technology because of its intrinsic features such as low energy requirements, cheap separation costs, and good quality product output. The focus of this review is on current developments in pervaporation, mass transport in membranes, material selection, fabrication and characterization techniques, and applications of various membranes in the separation of chemicals from water.
Collapse
Affiliation(s)
- Kadavil Subhash Lakshmy
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Devika Lal
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Anandu Nair
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Allan Babu
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Haritha Das
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Neethu Govind
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Aleksandra Korniak
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
- Correspondence: (A.P.); (A.T.)
| | - Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
- Correspondence: (A.P.); (A.T.)
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| |
Collapse
|
7
|
Choi S, Chaudhari S, Shin H, Cho K, Lee D, Shon M, Nam S, Park Y. Polydopamine-modified halloysite nanotube-incorporated polyvinyl alcohol membrane for pervaporation of water-isopropanol mixture. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Li S, Geng X, Ma C, Zhan X, Li J, Ma M, He J, Wang L. Improved performance of three-component structure mixed membrane for pervaporation modified by lignosulfonates@2D-MXene. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Zachariah S, Liu YL. Surface engineering through biomimicked structures and deprotonation of poly(vinyl alcohol) membranes for pervaporation desalination. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Abdul Wahab MS, Ghazali AA, Abd Ghapar NF, Abd Rahman S, Abu Samah R. Thin film nanocomposite (Tfnc) membranes: Future direction of Tfnc synthesis for alcohol dehydration. SURFACES AND INTERFACES 2021; 25:101165. [DOI: 10.1016/j.surfin.2021.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Chaudhari S, Cho K, Joo S, An B, Lee S, Yun S, Lee G, Park J, Shon M, Park Y. Layer-by-layer of graphene oxide-chitosan assembly on PVA membrane surface for the pervaporation separation of water-isopropanol mixtures. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0726-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Castro-Muñoz R, Galiano F, Figoli A. Recent advances in pervaporation hollow fiber membranes for dehydration of organics. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.09.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Pulyalina A, Rostovtseva V, Faykov I, Toikka A. Application of Polymer Membranes for a Purification of Fuel Oxygenated Additive. Methanol/Methyl Tert-butyl Ether (MTBE) Separation via Pervaporation: A Comprehensive Review. Polymers (Basel) 2020; 12:polym12102218. [PMID: 32992562 PMCID: PMC7650697 DOI: 10.3390/polym12102218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022] Open
Abstract
Methyl Tert-butyl Ether (MTBE) remains the most popular fuel additive to improve fuel performance and reduce the emission of hazardous components. The most common method of MTBE production is a catalytic synthesis with a great excess of methanol to improve the reaction yield. The problems of obtaining pure MTBE from the final product have determined the search for new techniques; primarily membrane methods. Pervaporation as an optimal membrane process for highly selective separation of organic mixtures is of particular interest. This review is focused on analysis of the research works on the various polymer membranes and their efficiency for the separation of the azeotropic methanol/MTBE mixture. Currently the most popular materials with optimal transport properties are poly(vinyl alcohol), cellulose acetate and polyheteroarylenes. Mixed matrix membranes (MMM) are highly effective as well as they show overall operational stability.
Collapse
|
14
|
Lu M, Hu MZ. Novel porous ceramic tube-supported polymer layer membranes for acetic acid/water separation by pervaporation dewatering. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Novel thin-film composite pervaporation membrane with controllable crosslinking degree for enhanced water/alcohol separation performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Zhang X, Li MP, Huang ZH, Zhang H, Liu WL, Xu XR, Ma XH, Xu ZL. Fast surface crosslinking ceramic hollow fiber pervaporation composite membrane with outstanding separation performance for isopropanol dehydration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Castro-Muñoz R, González-Valdez J, Ahmad MZ. High-performance pervaporation chitosan-based membranes: new insights and perspectives. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Today, the need of replacing synthetic polymers in the membrane preparation for diverse pervaporation (PV) applications has been recognized collectively and scientifically. Chitosan (CS), a bio-polymer, has been studied and proposed to achieve this goal especially in specific azeotropic water-organic, organic-water, and organic-organic separations, as well as in assisting specific processes (e.g. seawater desalination and chemical reactions). Different concepts of CS-based membranes have been developed, which include material blending and composite and mixed matrix membranes which have been tested for different separations. Hereby, the goal of this review is to provide a critical overview of the ongoing CS-based membrane developments, paying a special attention to the most relevant findings and results in the field. Furthermore, future trends of CS-based membranes in PV technology are presented, as well as concluding remarks and suggested strategies for the new scientist in the field.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas , 2000 San Antonio Buenavista , 50110 Toluca de Lerdo , Mexico
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science , Av. Eugenio Garza Sada 2501 , Monterrey, N.L. 64849 , Mexico
| | - M. Zamidi Ahmad
- Organic Materials Innovation Center (OMIC) , University of Manchester , Oxford Road , Manchester M13 9PL , UK
| |
Collapse
|
18
|
A study on development of alternative biopolymers based proton exchange membrane for microbial fuel cells and effect of blending ratio and ionic crosslinking on bioenergy generation and COD removal. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1957-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Ang MBMY, Gallardo MR, Dizon GVC, De Guzman MR, Tayo LL, Huang SH, Lai CL, Tsai HA, Hung WS, Hu CC, Chang Y, Lee KR. Graphene oxide functionalized with zwitterionic copolymers as selective layers in hybrid membranes with high pervaporation performance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117188] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Kirk RA, Putintseva M, Volkov A, Budd PM. The potential of polymers of intrinsic microporosity (PIMs) and PIM/graphene composites for pervaporation membranes. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42480-019-0018-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Chen YT, Liao YL, Sun YM, Hu CC, Lai JY, Liu YL. Lignin as an effective agent for increasing the separation performance of crosslinked polybenzoxazine based membranes in pervaporation dehydration application. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Tang S, Dong Z, Zhu X, Zhao Q. A poly(ionic liquid) complex membrane for pervaporation dehydration of acidic water-isopropanol mixtures. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
|
24
|
Castro-Muñoz R, Iglesia ÓDL, Fíla V, Téllez C, Coronas J. Pervaporation-Assisted Esterification Reactions by Means of Mixed Matrix Membranes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01564] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Roberto Castro-Muñoz
- University of Chemistry and Technology Prague, Technická
5, 16628 Prague 6, Czech Republic
- Department of Chemical and Environmental Engineering and Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Óscar de la Iglesia
- Centro Universitario de la Defensa Zaragoza, Academia General Militar, 50090 Zaragoza, Spain
| | - Vlastimil Fíla
- University of Chemistry and Technology Prague, Technická
5, 16628 Prague 6, Czech Republic
| | - Carlos Téllez
- Department of Chemical and Environmental Engineering and Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Joaquín Coronas
- Department of Chemical and Environmental Engineering and Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
25
|
Kwon Y, Chaudhari S, Kim C, Son D, Park J, Moon M, Shon M, Park Y, Nam S. Ag-exchanged NaY zeolite introduced polyvinyl alcohol/polyacrylic acid mixed matrix membrane for pervaporation separation of water/isopropanol mixture. RSC Adv 2018; 8:20669-20678. [PMID: 35542332 PMCID: PMC9080825 DOI: 10.1039/c8ra03474e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
Ag-exchanged NaY zeolite (Ag-NaZ) particles were prepared by ion exchange and introduced to a polyvinyl alcohol (PVA) membrane cross-linked with polyacrylic acid (PAA) for the pervaporation dehydration of an isopropanol (IPA) aqueous mixture. The Ag-exchanged NaY zeolite particles were characterized by FE-SEM, EDS, BET, and XRD studies. The prepared Ag-NaZ-loaded PVA/PAA composite membrane was characterized by FE-SEM, XRD, a swelling study, and contact angle measurements. Pervaporation characteristics were investigated in terms of Ag-NaZ concentrations within PVA/PAA membranes using diverse feed solution conditions. The preferential sorption of IPA/water mixtures for Ag-NaZ-introduced membranes were also determined by calculating the apparent activation energies of IPA and water permeation, respectively. As a result, flux and selectivity increased with the Ag-NaZ concentration to 5 wt% in the membrane. Optimum pervaporation performance was observed in a 5 wt% Ag-NaZ-incorporated membrane with a flux equal to 0.084 kg m-2 h-1 and a separation factor of 2717.9 at 40 °C from an 80 wt% IPA aqueous feed solution.
Collapse
Affiliation(s)
- YongSung Kwon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - Shivshankar Chaudhari
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - ChaEun Kim
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - DaHae Son
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - JiHwan Park
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - MyungJun Moon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - MinYoung Shon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 4629 +82 51 629 6440
| | - YouIn Park
- Center for Membranes, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 305-600 Korea
| | - SeungEun Nam
- Center for Membranes, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 305-600 Korea
| |
Collapse
|
26
|
Castro-Muñoz R, Galiano F, Fíla V, Drioli E, Figoli A. Mixed matrix membranes (MMMs) for ethanol purification through pervaporation: current state of the art. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Over the last few decades, different polymers have been employed as materials in membrane preparation for pervaporation (PV) application, which are currently used in the preparation of mixed matrix membranes (MMMs) for ethanol recovery and ethanol dehydration. The ethanol-water and water-ethanol mixtures are, in fact, the most studied PV systems since the bioethanol production is strongly increasing its demand. The present review focuses on the current state of the art and future trends on ethanol purification by using MMMs in PV. A particular emphasis will, therefore, be placed on the enhancement of specific components transport and selectivity through the incorporation of inorganic materials into polymeric membranes, mentioning key principles on suitable filler selection for a synergistic effect toward such separations. In addition, the following topics will be discussed: (i) the generalities of PV, including the theoretical aspects and its role in separation; (ii) a general overview of the methodologies for the preparation of MMMs; and (iii) the most recent findings based on MMMs for both ethanol recovery and ethanol dehydration for better evolution in the field. From the last decade of literature inputs, the poly(vinyl alcohol) has been the most used polymeric matrix targeting ethanol dehydration, while the zeolites have been the most used embedded materials. Today, the latest developments on MMM preparation declare that the future efforts will be directed to the chemical modification of polymeric materials as well as the incorporation of novel fillers or enhancing the existing ones through chemical modification.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Institute on Membrane Technology, ITM-CNR , c/o University of Calabria , 87030 Rende (CS) , Italy
- University of Chemistry and Technology Prague , Department of Inorganic Technology , Prague 6 , Czech Republic
- Nanoscience Institute of Aragon (INA) , Universidad de Zaragoza , 50018 Zaragoza , Spain
| | - Francesco Galiano
- Institute on Membrane Technology, ITM-CNR , c/o University of Calabria , Via P. Bucci 17c , 87030 Rende (CS) , Italy
| | - Vlastimil Fíla
- University of Chemistry and Technology Prague , Department of Inorganic Technology , Prague 6 , Czech Republic
| | - Enrico Drioli
- Institute on Membrane Technology, ITM-CNR , c/o University of Calabria , 87030 Rende (CS) , Italy
| | - Alberto Figoli
- Institute on Membrane Technology, ITM-CNR , c/o University of Calabria , Via P. Bucci 17c , 87030 Rende (CS) , Italy
| |
Collapse
|
27
|
Bukusoglu E, Kalıpçılar H, Yılmaz L. Dehydration of Industrial Byproduct Solutions for Recycling via Pervaporation–Adsorption Hybrid Process. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emre Bukusoglu
- Chemical Engineering Department, Middle East Technical University, Üniversiteler Mahallesi Dumlupınar
Bulvarı No:1, 06800 Ankara, Turkey
| | - Halil Kalıpçılar
- Chemical Engineering Department, Middle East Technical University, Üniversiteler Mahallesi Dumlupınar
Bulvarı No:1, 06800 Ankara, Turkey
| | - Levent Yılmaz
- Chemical Engineering Department, Middle East Technical University, Üniversiteler Mahallesi Dumlupınar
Bulvarı No:1, 06800 Ankara, Turkey
| |
Collapse
|
28
|
Roy S, Singha NR. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects. MEMBRANES 2017; 7:membranes7030053. [PMID: 28885591 PMCID: PMC5618138 DOI: 10.3390/membranes7030053] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/17/2022]
Abstract
Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.
Collapse
Affiliation(s)
- Sagar Roy
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Kolkata-700106, West Bengal, India.
| |
Collapse
|
29
|
Pulyalina A, Polotskaya G, Goikhman M, Podeshvo I, Chernitsa B, Kocherbitov V, Toikka A. Novel approach to determination of sorption in pervaporation process: a case study of isopropanol dehydration by polyamidoimideurea membranes. Sci Rep 2017; 7:8415. [PMID: 28827676 PMCID: PMC5566431 DOI: 10.1038/s41598-017-08420-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/10/2017] [Indexed: 11/09/2022] Open
Abstract
Development of novel membranes with optimal performance, selectivity, and stability is a key research area in membrane technology. In the present work aromatic polyamidoimideurea (PAIU) is synthesized and tested as promising membrane material for separation of water and alcohol mixtures. The PAIU membrane structure, density, and transport properties are studied. Mass transfer of water and isopropanol through the membrane is estimated by sorption and pervaporation tests to determine equilibrium sorption degree, diffusion coefficients, flux through the membrane, and separation factor. Two techniques of sorption study from liquid and from vapor phases are used as novel approach to experimental study of mass transfer. The vapor sorption calorimetry permits to analyze the behavior of the polymer material in sorption process. In pervaporation of water-isopropanol mixture, almost pure water mainly permeates through PAIU membrane. To improve the performance, a double layer membrane containing a thin PAIU layer on the surface of porous poly(phenylene oxide) support is developed. The double layer membrane is extremely effective in dehydration of isopropanol.
Collapse
Affiliation(s)
- A Pulyalina
- Saint-Petersburg State University, Department of Chemical Thermodynamics & Kinetics, Saint-Petersburg, 198504, Russia.
| | - G Polotskaya
- Saint-Petersburg State University, Department of Chemical Thermodynamics & Kinetics, Saint-Petersburg, 198504, Russia.,Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, 199004, Russia
| | - M Goikhman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, 199004, Russia
| | - I Podeshvo
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, 199004, Russia
| | - B Chernitsa
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, 199004, Russia
| | - V Kocherbitov
- Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, SE-205 06, Sweden
| | - A Toikka
- Saint-Petersburg State University, Department of Chemical Thermodynamics & Kinetics, Saint-Petersburg, 198504, Russia
| |
Collapse
|
30
|
Poly(vinyl alcohol) and poly(vinyl amine) blend membranes for isopropanol dehydration. J Appl Polym Sci 2017. [DOI: 10.1002/app.45572] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Langari S, Saljoughi E, Mousavi SM. Chitosan/polyvinyl alcohol/amino functionalized multiwalled carbon nanotube pervaporation membranes: Synthesis, characterization, and performance. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sepideh Langari
- Chemical Engineering Department, Faculty of Engineering; Ferdowsi University of Mashhad; Mashhad Iran
| | - Ehsan Saljoughi
- Chemical Engineering Department, Faculty of Engineering; Ferdowsi University of Mashhad; Mashhad Iran
| | - Seyed Mahmoud Mousavi
- Chemical Engineering Department, Faculty of Engineering; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
32
|
Liao YL, Hu CC, Lai JY, Liu YL. Crosslinked polybenzoxazine based membrane exhibiting in-situ self-promoted separation performance for pervaporation dehydration on isopropanol aqueous solutions. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.02.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Huang CH, Liu YL. Self-healing polymeric materials for membrane separation: an example of a polybenzimidazole-based membrane for pervaporation dehydration on isopropanol aqueous solution. RSC Adv 2017. [DOI: 10.1039/c7ra06644a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The demonstration of a self-healing material based separation membrane for pervaporation dehydration on liquid–liquid mixtures.
Collapse
Affiliation(s)
- Chien-Ho Huang
- Department of Chemical Engineering
- National Tsing Hua University
- 30013 Hsinchu
- Taiwan
| | - Ying-Ling Liu
- Department of Chemical Engineering
- National Tsing Hua University
- 30013 Hsinchu
- Taiwan
| |
Collapse
|
34
|
Holder SL, Lee CH, Popuri SR, Zhuang MX. Enhanced surface functionality and microbial fuel cell performance of chitosan membranes through phosphorylation. Carbohydr Polym 2016; 149:251-62. [DOI: 10.1016/j.carbpol.2016.04.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
|
35
|
Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO₂ Separation from CH₄ and N₂. MEMBRANES 2016; 6:membranes6020031. [PMID: 27294964 PMCID: PMC4931526 DOI: 10.3390/membranes6020031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 11/16/2022]
Abstract
CO₂ separation was found to be facilitated by transport membranes based on novel chitosan (CS)-poly(styrene) (PS) and chitosan (CS)-poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF₄], [bmim][PF₆], and [bmim][Tf₂N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75-104 MPa for CS-PAN and 69-75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO₂ permeability 400 Barrers belongs to CS-b-PS/[bmim][BF₄]. The highest selectivity α (CO₂/N₂) = 15.5 was achieved for CS-b-PAN/[bmim][BF₄]. The operational temperature of the membranes is under 220 °C.
Collapse
|
36
|
Jafari Sanjari A, Asghari M. A Review on Chitosan Utilization in Membrane Synthesis. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201500020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Ong YK, Shi GM, Le NL, Tang YP, Zuo J, Nunes SP, Chung TS. Recent membrane development for pervaporation processes. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.02.003] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Chitosan and oligo(dl-lactic acid) networks: Correlations between physical properties and macromolecular configuration. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.04.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Preparation of the superhydrophobic nano-hybrid membrane containing carbon nanotube based on chitosan and its antibacterial activity. Carbohydr Polym 2015; 130:381-7. [DOI: 10.1016/j.carbpol.2015.05.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/26/2015] [Accepted: 05/05/2015] [Indexed: 11/17/2022]
|
40
|
Chan KH, Wong ET, Idris A, Yusof NM. Modification of PES membrane by PEG-coated cobalt doped iron oxide for improved Cu(II) removal. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Luis P, Van der Bruggen B. The driving force as key element to evaluate the pervaporation performance of multicomponent mixtures. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Liu X, Hu D, Li M, Zhang J, Zhu Z, Zeng G, Zhang Y, Sun Y. Preparation and characterization of Silicalite-1/PDMS surface sieving pervaporation membrane for separation of ethanol/water mixture. J Appl Polym Sci 2015. [DOI: 10.1002/app.42460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiangyan Liu
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; 100 Haike Rd Shanghai 201210 China
- University of Chinese Academy of Sciences; 19 Yuquan Rd Shijingshan District Beijing 100049 China
| | - Deng Hu
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; 100 Haike Rd Shanghai 201210 China
| | - Meng Li
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; 100 Haike Rd Shanghai 201210 China
| | - Jianming Zhang
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; 100 Haike Rd Shanghai 201210 China
| | - Zhigao Zhu
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; 100 Haike Rd Shanghai 201210 China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; 100 Haike Rd Shanghai 201210 China
| | - Yanfeng Zhang
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; 100 Haike Rd Shanghai 201210 China
- School of Physical Science and Technology, ShanghaiTech University; Shanghai 201210 China
| | - Yuhan Sun
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; 100 Haike Rd Shanghai 201210 China
- School of Physical Science and Technology, ShanghaiTech University; Shanghai 201210 China
| |
Collapse
|
43
|
Wang Y. Pervaporation Dehydration of Ethyl Acetate via PBI/PEI Hollow Fiber Membranes. Ind Eng Chem Res 2015. [DOI: 10.1021/ie504681v] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Wang
- Key Laboratory
for Large-Format
Battery Materials and System, Ministry of Education, School of Chemistry
and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
44
|
Preparation and characterization of chitosan-poly (vinyl alcohol)/polyvinylidene fluoride hollow fiber composite membranes for pervaporation dehydration of isopropanol. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-014-0328-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Hydrophilically surface-modified and crosslinked polybenzimidazole membranes for pervaporation dehydration on tetrahydrofuran aqueous solutions. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.10.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Shi Z. Grafting chitosan oxidized by potassium persulfate onto Nylon 6 fiber, and characterizing the antibacterial property of the graft. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0534-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|