1
|
Wei J, Wang X, Wu X. Recycle graphite from spent lithium-ion batteries for H 2O 2 electrosynthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98183-98194. [PMID: 37606776 DOI: 10.1007/s11356-023-29354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
On-site H2O2 synthesis via the two-electron route oxygen reduction reaction for environmental remediation is attractive. This work offers a novel strategy for both spent graphite recovery and H2O2 electrosynthesis catalyst preparation. The graphite is directly recycled from spent lithium-ion batteries to an H2O2 electrosynthesis catalyst. From the view of sustainable development and environmental protection, the H2O2 electrosynthesis catalyst prepared using spent graphite is eco-friendly and cost-efficient. The surface functional groups of the recycled graphite are finely tuned by the HNO3 medium to induce -COOH and C-O-C groups. The activated graphite exhibits high H2O2 activity and selectivity, compared to the raw spent graphite. The activated graphite can achieve an H2O2 Faradic efficiency of about 80%. The activated graphite has a good prospect for T-acid wastewater treatment as the H2O2 generation catalyst. Almost 92% of chemical oxygen demand can be removed.
Collapse
Affiliation(s)
- Jucai Wei
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xi Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xu Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Hubei HuaDeLai (HDL) Co. Ltd, Wuhan, 430070, China.
| |
Collapse
|
2
|
Dou J, Han S, Lin S, Qi Z, Huang F, Feng X, Yao Z, Wang J, Zhang L. Tailoring the selectivity of quasi-PIMs nanofiltration membrane via molecular flexibility of acyl chloride monomers for desalination from dye effluents. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Ye W, Liu R, Chen X, Chen Q, Lin J, Lin X, Van der Bruggen B, Zhao S. Loose nanofiltration-based electrodialysis for highly efficient textile wastewater treatment. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118182] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Sun Y, Zheng W, Yin D. Removal of 2-naphthalenesulfonic acid using novel dual functional weakly basic anion exchange resins from aqueous solution. ADSORPT SCI TECHNOL 2019. [DOI: 10.1177/0263617418824809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two novel weakly basic anion exchange resins BNH and BN2 bearing two different functional groups was fabricated via the two-step amination of chloromethylated polystyrene-divinylbenzene beads with dibutylamine and dimethylamine. The adsorption properties of BNH and BN2 for the 2-naphthalenesulfonic acid (NSA) removal from wastewater were compared with two synthesized monofunctional anion exchange resins BN0 and BN6 (derived from dimethylamine and dibutylamine, respectively). The experimental data revealed that the adsorption process on the four resins fitted well with the pseudo-second-order kinetics equation and the equilibrium isotherms were in good agreement with the Langmuir model. Thermodynamic analyses illustrated that 2-naphthalenesulfonic acid adsorption onto resins was an endothermic and spontaneous process. Importantly, BN2 still displayed relatively high adsorption capacity in the existence of Na2SO4, indicative of an excellent selectivity for 2-naphthalenesulfonic acid over sulfate than other resins. The obtained results elucidate that BN2 could have potential industrial application in effluent disposal fields because of its superior selectivity, acceptable kinetics, and desorption capability.
Collapse
Affiliation(s)
- Yue Sun
- Department of Municipal Engineering, Southeast University, China
| | - Weisheng Zheng
- Department of Municipal Engineering, Southeast University, China
| | - Deqiang Yin
- Department of Municipal Engineering, Southeast University, China
| |
Collapse
|
5
|
Zhang Y, Zhang L, Hou L, Kuang S, Yu A. Modeling of the variations of permeate flux, concentration polarization, and solute rejection in nanofiltration system. AIChE J 2018. [DOI: 10.1002/aic.16475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaqin Zhang
- College of Chemical and Biological Engineering Zhejiang University Hangzhou, 310027 China
- ARC Research Hub for Computational Particle Technology, Dept. of Chemical Engineering Monash University Melbourne Victoria, 3800 Australia
| | - Lin Zhang
- College of Chemical and Biological Engineering Zhejiang University Hangzhou, 310027 China
| | - Lian Hou
- College of Chemical and Biological Engineering Zhejiang University Hangzhou, 310027 China
| | - Shibo Kuang
- ARC Research Hub for Computational Particle Technology, Dept. of Chemical Engineering Monash University Melbourne Victoria, 3800 Australia
| | - Aibing Yu
- ARC Research Hub for Computational Particle Technology, Dept. of Chemical Engineering Monash University Melbourne Victoria, 3800 Australia
| |
Collapse
|
6
|
Ye W, Lin J, Borrego R, Chen D, Sotto A, Luis P, Liu M, Zhao S, Tang CY, Van der Bruggen B. Advanced desalination of dye/NaCl mixtures by a loose nanofiltration membrane for digital ink-jet printing. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.045] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Zhang S, Zhou J, Fan L, Qiu Y, Jiang L, Zhao L. Investigating the mechanism of nanofiltration separation of glucosamine hydrochloride and N-acetyl glucosamine. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-016-0112-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
9
|
Zhao D, Yu S, Liu G, Yuan Q, Guo H. Polypiperazine-amide nanofiltration membrane incorporated with poly(ethylene glycol) derivative for electrodialysis concentrate treatment. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Li Y, Su Y, Zhao X, Zhang R, Liu Y, Fan X, Zhu J, Ma Y, Liu Y, Jiang Z. Preparation of Antifouling Nanofiltration Membrane via Interfacial Polymerization of Fluorinated Polyamine and Trimesoyl Chloride. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01950] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yafei Li
- Key Laboratory for Green
Technology of Ministry of Education, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanlei Su
- Key Laboratory for Green
Technology of Ministry of Education, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xueting Zhao
- Key Laboratory for Green
Technology of Ministry of Education, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Runnan Zhang
- Key Laboratory for Green
Technology of Ministry of Education, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanan Liu
- Key Laboratory for Green
Technology of Ministry of Education, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiaochen Fan
- Key Laboratory for Green
Technology of Ministry of Education, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Junao Zhu
- Key Laboratory for Green
Technology of Ministry of Education, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanyan Ma
- Key Laboratory for Green
Technology of Ministry of Education, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yuan Liu
- Key Laboratory for Green
Technology of Ministry of Education, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green
Technology of Ministry of Education, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|