1
|
Mehboob S, Lee JY, Hun Ahn J, Abbas S, Huy Do X, Kim J, Shin HJ, Henkensmeier D, Yong Ha H. Perfect Capacity Retention of All-Vanadium Redox Flow Battery using Nafion / Polyaniline Composite Membranes. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
2
|
Kawashima K, Shirzadi M, Fukasawa T, Fukui K, Tsuru T, Ishigami T. Numerical modeling for particulate flow through realistic microporous structure of microfiltration membrane: Direct numerical simulation coordinated with focused ion beam scanning electron microscopy. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Shirzadi M, Ueda M, Hada K, Fukasawa T, Fukui K, Mino Y, Tsuru T, Ishigami T. High-Resolution Numerical Simulation of Microfiltration of Oil-in-Water Emulsion Permeating through a Realistic Membrane Microporous Structure Generated by Focused Ion Beam Scanning Electron Microscopy Images. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2094-2108. [PMID: 35104148 DOI: 10.1021/acs.langmuir.1c03183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to the limitations of visualization techniques in experimental studies and low-resolution numerical models based on computational fluid dynamics (CFD), the detailed behavior of oil droplets during microfiltration is not well understood. Hence, a high-resolution CFD model based on an in-house direct numerical simulation (DNS) code was constructed in this study to analyze the detailed dynamics of an oil-in-water (O/W) emulsion using a microfiltration membrane. The realistic microporous structure of commercial ceramic microfiltration membranes (mullite and α-alumina membranes) was obtained using an image processing technique based on focused ion beam scanning electron microscopy (FIB-SEM). Numerical simulations of microfiltration of O/W emulsions on the membrane microstructure obtained by FIB-SEM were performed, and the effects of different parameters, including contact angle, transmembrane pressure, and membrane microporous structure, on filtration performance were studied. Droplet deformation had a strong impact on filtration behavior because coalesced droplets with diameters larger than the pore diameter permeated the membrane pores. The permeability, oil hold-up fraction inside the pores, and rejection were considerably influenced by the contact angle, while the transmembrane pressure had a little impact on the permeability and oil hold-up fraction. The membrane structure, especially the pore size distribution, also had a significant effect on the microfiltration behavior and performance.
Collapse
Affiliation(s)
- Mohammadreza Shirzadi
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Masaki Ueda
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Kodai Hada
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tomonori Fukasawa
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Kunihiro Fukui
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Yasushi Mino
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Toshinori Tsuru
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Toru Ishigami
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
4
|
Brickey KP, Zydney AL, Gomez ED. FIB-SEM tomography reveals the nanoscale 3D morphology of virus removal filters. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Wan H, Islam MS, Briot NJ, Schnobrich M, Pacholik L, Ormsbee L, Bhattacharyya D. Pd/Fe nanoparticle integrated PMAA-PVDF membranes for chloro-organic remediation from synthetic and site groundwater. J Memb Sci 2020; 594:117454. [PMID: 31929677 PMCID: PMC6953629 DOI: 10.1016/j.memsci.2019.117454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The poly(methacrylic acid) (PMAA) was synthesized in the pores of commercial microfiltration PVDF membranes to allow incorporation of catalytic palladium/iron (Pd/Fe) nanoparticles for groundwater remediation. Particles of 17.1 ± 4.9 nm size were observed throughout the pores of membranes using a focused ion beam. To understand the role of Pd fractions and particle compositions, 2-chlorobiphenyl was used as a model compound in solution phase studies. Results show H2 production (Fe0 corrosion in water) is a function of Pd coverage on the Fe. Insufficient H2 production caused by higher coverage (> 10.4% for 5.5 wt%) hindered dechlorination rate. With 0.5 wt% Pd, palladized-Fe reaction rate (surface area normalized reaction rate, ksa = 0.12 L/(m2-h) was considerably higher than isolated Pd and Fe particles. For groundwater, in a single pass of Pd/Fe-PMAA-PVDF membranes (0.5 wt% Pd), chlorinated organics, such as trichloroethylene (177 ppb) and carbon tetrachloride (35 ppb), were degraded to 16 and 0.3 ppb, respectively, at 2.2 seconds of residence time. The degradation rate (observed ksa) followed the order of carbon tetrachloride > trichloroethylene > tetrachloroethylene > chloroform. A 36 h continuous flow study with organic mixture and the regeneration process show the potential for on-site remediation.
Collapse
Affiliation(s)
- Hongyi Wan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Md Saiful Islam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Nicolas J Briot
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| | | | - Lucy Pacholik
- Department of Civil Engineering University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Lindell Ormsbee
- Department of Civil Engineering University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| |
Collapse
|
6
|
Flux-enhanced α-alumina tight ultrafiltration membranes for effective treatment of dye/salt wastewater at high temperatures. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Rykaczewski K, Mieritz DG, Liu M, Ma Y, Iezzi EB, Sun X, Wang LP, Solanki KN, Seo DK, Wang RY. Far-reaching geometrical artefacts due to thermal decomposition of polymeric coatings around focused ion beam milled pigment particles. J Microsc 2015; 262:316-25. [PMID: 26695001 DOI: 10.1111/jmi.12367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/19/2015] [Indexed: 11/29/2022]
Abstract
Focused ion beam and scanning electron microscope (FIB-SEM) instruments are extensively used to characterize nanoscale composition of composite materials, however, their application to analysis of organic corrosion barrier coatings has been limited. The primary concern that arises with use of FIB to mill organic materials is the possibility of severe thermal damage that occurs in close proximity to the ion beam impact. Recent research has shown that such localized artefacts can be mitigated for a number of polymers through cryogenic cooling of the sample as well as low current milling and intelligent ion beam control. Here we report unexpected nonlocalized artefacts that occur during FIB milling of composite organic coatings with pigment particles. Specifically, we show that FIB milling of pigmented polysiloxane coating can lead to formation of multiple microscopic voids within the substrate as far as 5 μm away from the ion beam impact. We use further experimentation and modelling to show that void formation occurs via ion beam heating of the pigment particles that leads to decomposition and vaporization of the surrounding polysiloxane. We also identify FIB milling conditions that mitigate this issue.
Collapse
Affiliation(s)
- K Rykaczewski
- School for Engineering of Transport, Matter and Energy, Arizona State University, Tempe, Arizona, U.S.A
| | - D G Mieritz
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, U.S.A
| | - M Liu
- School for Engineering of Transport, Matter and Energy, Arizona State University, Tempe, Arizona, U.S.A
| | - Y Ma
- School for Engineering of Transport, Matter and Energy, Arizona State University, Tempe, Arizona, U.S.A
| | - E B Iezzi
- Naval Research Laboratory, Chemistry Division, Washington, DC, U.S.A
| | - X Sun
- School for Engineering of Transport, Matter and Energy, Arizona State University, Tempe, Arizona, U.S.A
| | - L P Wang
- School for Engineering of Transport, Matter and Energy, Arizona State University, Tempe, Arizona, U.S.A
| | - K N Solanki
- School for Engineering of Transport, Matter and Energy, Arizona State University, Tempe, Arizona, U.S.A
| | - D-K Seo
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, U.S.A
| | - R Y Wang
- School for Engineering of Transport, Matter and Energy, Arizona State University, Tempe, Arizona, U.S.A
| |
Collapse
|