1
|
Chandra Kishore S, Perumal S, Atchudan R, Alagan M, Wadaan MA, Baabbad A, Manoj D. Recent Advanced Synthesis Strategies for the Nanomaterial-Modified Proton Exchange Membrane in Fuel Cells. MEMBRANES 2023; 13:590. [PMID: 37367794 DOI: 10.3390/membranes13060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Hydrogen energy is converted to electricity through fuel cells, aided by nanostructured materials. Fuel cell technology is a promising method for utilizing energy sources, ensuring sustainability, and protecting the environment. However, it still faces drawbacks such as high cost, operability, and durability issues. Nanomaterials can address these drawbacks by enhancing catalysts, electrodes, and fuel cell membranes, which play a crucial role in separating hydrogen into protons and electrons. Proton exchange membrane fuel cells (PEMFCs) have gained significant attention in scientific research. The primary objectives are to reduce greenhouse gas emissions, particularly in the automotive industry, and develop cost-effective methods and materials to enhance PEMFC efficiency. We provide a typical yet inclusive review of various types of proton-conducting membranes. In this review article, special focus is given to the distinctive nature of nanomaterial-filled proton-conducting membranes and their essential characteristics, including their structural, dielectric, proton transport, and thermal properties. We provide an overview of the various reported nanomaterials, such as metal oxide, carbon, and polymeric nanomaterials. Additionally, the synthesis methods in situ polymerization, solution casting, electrospinning, and layer-by-layer assembly for proton-conducting membrane preparation were analyzed. In conclusion, the way to implement the desired energy conversion application, such as a fuel cell, using a nanostructured proton-conducting membrane has been demonstrated.
Collapse
Affiliation(s)
- Somasundaram Chandra Kishore
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Chennai 602105, Tamil Nadu, India
| | - Suguna Perumal
- Department of Chemistry, Sejong University, Seoul 143747, Republic of Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Muthulakshmi Alagan
- Center for Environmental Management Laboratory, National Institute of Technical Teachers Training and Research, Chennai 600113, Tamil Nadu, India
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Almohannad Baabbad
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Devaraj Manoj
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
- Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| |
Collapse
|
2
|
Murmu R, Roy D, Sutar H, Senapati P, Patra SC. Development of the highly performed chitosan based thin film towards the sustainability of direct methanol fuel cell. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2133616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Rabiranjan Murmu
- Department of Chemical Engineering, Jadavpur University, Kolkata, India
- Department of Chemical Engineering, Indira Gandhi Institute of Technology Sarang, Odisha, India
| | - Debashis Roy
- Department of Chemical Engineering, Jadavpur University, Kolkata, India
| | - Harekrushna Sutar
- Department of Chemical Engineering, Indira Gandhi Institute of Technology Sarang, Odisha, India
| | - Pragyan Senapati
- Department of Mechanical Engineering, Siksha ‘O’ Anusandhan (Deemed to Be University) Bhubaneswar, Odisha, India
| | - Sarat Chandra Patra
- Department of Chemical Engineering, Indira Gandhi Institute of Technology Sarang, Odisha, India
| |
Collapse
|
3
|
Young Ryu G, Jin An S, Yu S, Jung Kim K, Jae H, Roh D, Seok Chi W. Dual-sulfonated MOF/Polysulfone Composite Membranes Boosting Performance for Proton Exchange Membrane Fuel Cells. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Beydaghi H, Bellani S, Najafi L, Oropesa-Nuñez R, Bianca G, Bagheri A, Conticello I, Martín-García B, Kashefi S, Serri M, Liao L, Sofer Z, Pellegrini V, Bonaccorso F. Sulfonated NbS 2-based proton-exchange membranes for vanadium redox flow batteries. NANOSCALE 2022; 14:6152-6161. [PMID: 35389414 DOI: 10.1039/d1nr07872k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, novel proton-exchange membranes (PEMs) based on sulfonated poly(ether ether ketone) (SPEEK) and two-dimensional (2D) sulfonated niobium disulphide (S-NbS2) nanoflakes are synthesized by a solution-casting method and used in vanadium redox flow batteries (VRFBs). The NbS2 nanoflakes are produced by liquid-phase exfoliation of their bulk counterpart and chemically functionalized with terminal sulfonate groups to improve dimensional and chemical stabilities, proton conductivity (σ) and fuel barrier properties of the as-produced membranes. The addition of S-NbS2 nanoflakes to SPEEK decreases the vanadium ion permeability from 5.42 × 10-7 to 2.34 × 10-7 cm2 min-1. Meanwhile, it increases the membrane σ and selectivity up to 94.35 mS cm-2 and 40.32 × 104 S min cm-3, respectively. The cell assembled with the optimized membrane incorporating 2.5 wt% of S-NbS2 nanoflakes (SPEEK:2.5% S-NbS2) exhibits high efficiency metrics, i.e., coulombic efficiency between 98.7 and 99.0%, voltage efficiency between 90.2 and 73.2% and energy efficiency between 89.3 and 72.8% within the current density range of 100-300 mA cm-2, delivering a maximum power density of 0.83 W cm-2 at a current density of 870 mA cm-2. The SPEEK:2.5% S-NbS2 membrane-based VRFBs show a stable behavior over 200 cycles at 200 mA cm-2. This study opens up an effective avenue for the production of advanced SPEEK-based membranes for VRFBs.
Collapse
Affiliation(s)
- Hossein Beydaghi
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | | | - Leyla Najafi
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | - Reinier Oropesa-Nuñez
- Department of Material Science and Engineering, Uppsala University, Box 534, 75103 Uppsala, Sweden
| | - Gabriele Bianca
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Ahmad Bagheri
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Irene Conticello
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | | | - Sepideh Kashefi
- Department of Chemical Engineering, Semnan University, Semnan, 3513119111, Iran
| | - Michele Serri
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Liping Liao
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vittorio Pellegrini
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| |
Collapse
|
5
|
Shanmugam S, Ketpang K, Aziz MA, Oh K, Lee K, Son B, Chanunpanich N. Composite polymer electrolyte membrane decorated with porous titanium oxide nanotubes for fuel cell operating under low relative humidity. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Composite Polymers Development and Application for Polymer Electrolyte Membrane Technologies-A Review. Molecules 2020; 25:molecules25071712. [PMID: 32276482 PMCID: PMC7180464 DOI: 10.3390/molecules25071712] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 11/24/2022] Open
Abstract
Nafion membranes are still the dominating material used in the polymer electrolyte membrane (PEM) technologies. They are widely used in several applications thanks to their excellent properties: high proton conductivity and high chemical stability in both oxidation and reduction environment. However, they have several technical challenges: reactants permeability, which results in reduced performance, dependence on water content to perform preventing the operation at higher temperatures or low humidity levels, and chemical degradation. This paper reviews novel composite membranes that have been developed for PEM applications, including direct methanol fuel cells (DMFCs), hydrogen PEM fuel cells (PEMFCs), and water electrolysers (PEMWEs), aiming at overcoming the drawbacks of the commercial Nafion membranes. It provides a broad overview of the Nafion-based membranes, with organic and inorganic fillers, and non-fluorinated membranes available in the literature for which various main properties (proton conductivity, crossover, maximum power density, and thermal stability) are reported. The studies on composite membranes demonstrate that they are suitable for PEM applications and can potentially compete with Nafion membranes in terms of performance and lifetime.
Collapse
|
7
|
Yurova PA, Aladysheva US, Stenina IA, Yaroslavtsev AB. Transport Properties of MF-4SK Membranes Doped with Sulfonated Zirconia. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193519110156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Colón-Ortiz J, Ramesh P, Tsilomelekis G, Neimark AV. Permeation dynamics of dimethyl methylphosphonate through polyelectrolyte composite membranes by in-situ Raman spectroscopy. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Çalı A, Şahin A, Ar İ. Incorporating sepiolite and kaolinite to improve the performance of SPEEK composite membranes for proton exchange membrane fuel cells. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aygün Çalı
- Department of Chemical Engineering, Faculty of EngineeringGazi University Ankara Turkey
| | - Alpay Şahin
- Department of Chemical Engineering, Faculty of EngineeringGazi University Ankara Turkey
| | - İrfan Ar
- Department of Chemical Engineering, Faculty of EngineeringGazi University Ankara Turkey
| |
Collapse
|
10
|
Ru C, Gu Y, Duan Y, Na H, Zhao C. Nafion based semi-interpenetrating polymer network membranes from a cross-linkable SPAEK and a fluorinated epoxy resin for DMFCs. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Characterization and evaluation of Nafion HP JP as proton exchange membrane: transport properties, nanostructure, morphology, and cell performance. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04366-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Sigwadi R, Dhlamini MS, Mokrani T, Nemavhola F. Enhancing the mechanical properties of zirconia/Nafion ® nanocomposite membrane through carbon nanotubes for fuel cell application. Heliyon 2019; 5:e02112. [PMID: 31372560 PMCID: PMC6661287 DOI: 10.1016/j.heliyon.2019.e02112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/11/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2022] Open
Abstract
Membranes are widely used daily, such as for filtration in reverse osmosis, or in the form of electrolyte membrane fuel cells. Modified Nafion® membranes were synthesised by impregnation and their mechanical properties were observed. The effect of the incorporation of a ZrO2-CNT nano-filler within Nafion® membrane on the thermal stability and crystallinity was investigated by TGA and XRD. Tensile test results show the increases in the mechanical properties of Nafion® 117 membranes impregnated with ZrO2-CNT when compared with that of commercial Nafion® 117 membranes. The results also show that adding ZrO2-CNT in Nafion® 117 membranes improves the water contact angle and water uptake, as it enhances water retention within the membrane. The SEM results indicated that ZrO2-CNT was well distributed in the Nafion® 117 membrane pores through the impregnation method.
Collapse
Affiliation(s)
- R Sigwadi
- Department of Chemical Engineering, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - M S Dhlamini
- Department of Physics, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - T Mokrani
- Department of Chemical Engineering, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - F Nemavhola
- Department of Mechanical Engineering, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| |
Collapse
|
13
|
Oh K, Kwon O, Son B, Lee DH, Shanmugam S. Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Pineda-Delgado JL, Gutierrez B CK, Rivas S, Arjona N, Arriaga LG, Chávez-Ramirez AU. Synthesis and evaluation of HfO 2 as a prospective filler in inorganic-organic hybrid membranes based on Nafion for PEM fuel cells. NANOTECHNOLOGY 2019; 30:105707. [PMID: 30537689 DOI: 10.1088/1361-6528/aaf7c2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hybrid inorganic-organic Nafion membranes modified with metal oxides (typically TiO2, ZrO2, WO3) are a good alternative for fuel cell applications. However, one of their main limitations is associated with their relative low proton conductivity at temperatures above 80 °C. In this work, we overcome this issue using HfO2 as a filler. HfO2 was prepared by a sol-gel method, and it was compared with a recast Nafion membrane (named as recast). Deconvolved XPS spectra confirmed the presence of hafnia, while EDS analysis was used to determine its weight content resulting in a 1.88 wt%. FT-IR ATR experiments indicated that the HfO2 hybrid membrane possess a higher capability to retain water than the recast. Thus, the water uptake, swelling degree, conductivity tests and fuel cell evaluations were performed. The water uptake analysis revealed that the hybrid membrane presented a higher retention percentage at 100 °C (61%) than recast (29%). This improvement enabled a higher ionic conductivity at 80 °C and 100 °C. The hybrid membrane displayed a higher conductivity at 100 °C than the recast membrane (112 versus 82 mS cm-1), increasing the cell performance to 0.36 W cm-2; being this performance almost two-fold higher to that obtained for the recast membrane. In summary, herein we demonstrated that HfO2 can be considered as an excellent substitute to conventional fillers.
Collapse
Affiliation(s)
- J L Pineda-Delgado
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S C, Querétaro, CP 76703, México
| | | | | | | | | | | |
Collapse
|
15
|
Han R, Wu P. Composite Proton-Exchange Membrane with Highly Improved Proton Conductivity Prepared by in Situ Crystallization of Porous Organic Cage. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18351-18358. [PMID: 29745640 DOI: 10.1021/acsami.8b04311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Porous organic cage, a kind of newly emerging soluble crystalline porous material, is introduced to proton-exchange membrane by in situ crystallization. The crystallized Cage 3 with intrinsic water-meditated three-dimensional interconnected proton pathways working together with Nafion matrix generates a composite membrane with highly improved proton conductivity. Different from inorganic crystalline porous materials, like metal-organic frameworks, the organic porous material shows better compatibility with Nafion matrix due to the absence of inorganic elements. In addition, Cage 3 can absorb water up to 20.1 wt %, which effectively facilitates proton conduction under both high- and low-humidity conditions. Meanwhile, the selectivity of Nafion-Cage 3 composite membrane is also elevated upon the loading of Cage 3. The proton conductivity is evidently enhanced without obvious increased methanol permeability. At 90 °C and 95% RH, the proton conductivity of NC3-5 reaches 0.27 S·cm-1, highly improved compared to 0.08 S·cm-1 of recast Nafion under the same condition. This study offers a new strategy for modifying proton-exchange membrane with crystalline porous materials.
Collapse
Affiliation(s)
- Ruiyi Han
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , 200433 Shanghai , P. R. China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , 200433 Shanghai , P. R. China
| |
Collapse
|
16
|
Liu L, Chen W, Li Y. A statistical study of proton conduction in Nafion®-based composite membranes: Prediction, filler selection and fabrication methods. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Proton Exchange Membrane with Enlarged Operating Temperature by Incorporating Phosphonic Acid Functionalized and Crosslinked Siloxane in Sulfonated Poly(ether ether ketone) (SPEEK) Matrix. Macromol Res 2018. [DOI: 10.1007/s13233-018-6015-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Novel composite polymer electrolyte membrane using solid superacidic sulfated zirconia - Functionalized carbon nanotube modified chitosan. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.131] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Vinothkannan M, Kim AR, Gnana kumar G, Yoo DJ. Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells. RSC Adv 2018; 8:7494-7508. [PMID: 35539095 PMCID: PMC9078422 DOI: 10.1039/c7ra12768e] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/10/2018] [Indexed: 12/23/2022] Open
Abstract
Preparation process of Nafion/Fe3O4–SGO composite membranes.
Collapse
Affiliation(s)
- Mohanraj Vinothkannan
- Graduate School
- Department of Energy Storage/Conversion Engineering
- Hydrogen and Fuel Cell Research Center
- Chonbuk National University
- Jeollabuk-do 54896
| | - Ae Rhan Kim
- Department of Bioenvironmental Chemistry
- R&D Center for CANUTECH
- Business Incubation Center
- Chonbuk National University
- Jeollabuk-do 54896
| | - G. Gnana kumar
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625021
- India
| | - Dong Jin Yoo
- Graduate School
- Department of Energy Storage/Conversion Engineering
- Hydrogen and Fuel Cell Research Center
- Chonbuk National University
- Jeollabuk-do 54896
| |
Collapse
|
20
|
Qiu X, Ueda M, Hu H, Sui Y, Zhang X, Wang L. Poly(2,5-benzimidazole)-Grafted Graphene Oxide as an Effective Proton Conductor for Construction of Nanocomposite Proton Exchange Membrane. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33049-33058. [PMID: 28872297 DOI: 10.1021/acsami.7b07777] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To improve proton conduction properties of conventional sulfonated poly(ether ether ketone) (SPEEK), poly(2,5-benzimidazole)-grafted graphene oxide (ABPBI-GO) was prepared to fabricate nanocomposite membranes, which then were further doped with phosphoric acid (PA). The ABPBI-GO was synthesized through the reaction of 3,4-diaminobenzoic acid with the carboxyl acid groups present on the GO surface. The simultaneous incorporation of ABPBI-GO and PA into SPEEK did not only improve the physicochemical performance of the membranes in terms of thermal stability, water uptake, dimensional stability, proton conductivity, and methanol permeation resistance but also relieve PA leaching from the membranes though acid-base interactions. The resulting composite membranes exhibited enhanced proton conductivities in extended humidity ranges thanks to the hygroscopic character of PA and the increased water uptake. Moreover, the unique self-ionization, self-dehydration, and nonvolatile properties of PA improved the high-temperature proton conductivities (σ) of PA-doped membranes. The PA-doped SPEEK/ABPBI-GO-3.0 delivered a σ of 7.5 mS cm-1 at 140 °C/0% RH. This value was fourfold higher than that of pristine SPEEK membranes. The PA-doped SPEEK/ABPBI-GO-3.0 based fuel cell membranes delivered power densities of 831.06 and 72.25 mW cm-2 at 80 °C/95% RH and 120 °C/0% RH, respectively. By contrast, the PA-doped SPEEK membrane generated only 655.63 and 44.58 mW cm-2 under the same testing conditions.
Collapse
Affiliation(s)
- Xiang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology , 200 Xiaolingwei, Nanjing 210094, Jiangsu Province, China
| | - Mitsuru Ueda
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology , 200 Xiaolingwei, Nanjing 210094, Jiangsu Province, China
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology , 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Huayuan Hu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology , 200 Xiaolingwei, Nanjing 210094, Jiangsu Province, China
| | - Yuqian Sui
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology , 200 Xiaolingwei, Nanjing 210094, Jiangsu Province, China
| | - Xuan Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology , 200 Xiaolingwei, Nanjing 210094, Jiangsu Province, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology , 200 Xiaolingwei, Nanjing 210094, Jiangsu Province, China
| |
Collapse
|
21
|
Jo SG, Kim TH, Yoon SJ, Oh SG, Cha MS, Shin HY, Ahn JM, Lee JY, Hong YT. Synthesis and investigation of random-structured ionomers with highly sulfonated multi-phenyl pendants for electrochemical applications. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
|
23
|
Cao L, Shen X, Yang X, Zhang B, Li Z, Gang M, Wang C, Wu H, Jiang Z. Enhanced proton conductivity of proton exchange membranes by incorporating phosphorylated hollow titania spheres. RSC Adv 2016. [DOI: 10.1039/c6ra09291h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The synergistic enhancement in proton conductivity of hybrid membranes by improving the water retention capacity and introducing additional proton transfer sites is reported.
Collapse
Affiliation(s)
- Li Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaohui Shen
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xin Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Bei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Zongyu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Mingyue Gang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Chongbin Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
24
|
Beauger C, Lainé G, Burr A, Taguet A, Otazaghine B. Improvement of Nafion®-sepiolite composite membranes for PEMFC with sulfo-fluorinated sepiolite. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Efficient water management of composite membranes operated in polymer electrolyte membrane fuel cells under low relative humidity. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.06.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|