1
|
Chen X, Zhou Q, Zhang Y, Chen L, Li N. Incorporating Mixed-Ligand Zeolitic Imidazolate Framework into Polydimethyldiethoxysilane (PDMDES) Membrane for Enhancing Alcohol Pervaporation Recovery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39560999 DOI: 10.1021/acsami.4c17781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
In the present study, a zeolitic imidazolate framework with mixed ligands, ZIF-8-90, was synthesized and embedded into an ultrathin polydimethyldiethoxysilane (PDMDES) matrix to prepare a ZIF-8-90/PDMDES mixed matrix membrane (MMM) for the enhanced recovery of alcohols from dilute aqueous solutions via pervaporation, using a facile solution coating method. The synthesized ZIF-8-90 particles demonstrated superior hydrophobicity and thermal stability compared to those of both ZIF-8 and ZIF-90 particles. Furthermore, the hydrophobicity, thermal stability, and sorption ability for alcohols of the ZIF-8-90/PDMDES MMM were significantly improved, attributed to the incorporation of mixed-ligand ZIF-8-90. Notably, the MMMs displayed two distinct cross-sectional morphologies: (1) ZIF-8-90 particles enveloped by PDMDES polymer forming filler bulges and (2) an accumulation of ZIF-8-90 particles resembling a brick-wall-like structure. The MMM incorporating 2.5 wt % ZIF-8-90 exhibited the optimal performance among the fabricated MMMs with various ZIF-8-90 loadings, spanning from 0 to 3.2 wt %. The effects of feed concentrations and operation temperatures were systematically investigated. The best pervaporation performance was achieved using the 2.5 wt % ZIF-8-90-filled MMM, effectively separating a 5.0 wt % ethanol/water mixture at 60 °C, yielding a distinguished total flux of 7.70 kg·m-2·h-1, an improved separation factor of 9.96, and an extraordinarily high PSI of 68.99 kg·m-2·h-1. Comparative analyses highlighted the superior pervaporation performance of the ZIF-8-90/PDMDES MMM over ZIF-8/PDMDES MMM, ZIF-90/PDMDES MMM, and other MMMs, underscoring its potential for practical applications in alcohol recovery.
Collapse
Affiliation(s)
- Xiaole Chen
- College of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710000, China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qulan Zhou
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yafei Zhang
- College of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710000, China
| | - Linyu Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Na Li
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Si Z, Wu H, Qin P, Van der Bruggen B. Polydimethylsiloxane based membranes for biofuels pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
He QP, Wang YY, Wang PF, Dou XM. Preparation of modified MFI-type/PDMS composite membranes for the separation of dichlorobenzene isomers via pervaporation. RSC Adv 2022; 12:16131-16140. [PMID: 35733675 PMCID: PMC9150433 DOI: 10.1039/d2ra01950g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Zeolite-polymer composite membranes have become promising and effective materials for the pervaporative separation of liquids, especially for isomeric mixtures. In this paper, silicalite-1/PDMS composite membranes have been used to investigate the separation of dichlorobenzene (DCB) isomers via pervaporation for the first time. Silicalite-1 zeolites modified by the silane coupling agent, NH3-C3H6-Si(OC2H5)3, have been incorporated into polydimethylsiloxane (PDMS). Then, the silicalite-1/PDMS composite membranes have been successfully prepared on porous polyvinylidene fluoride (PVDF) supports. The morphology and structure of the silicalite-1 zeolites and silicalite-1/PDMS composite membranes have been characterized by XRD, FTIR, SEM and BET techniques. The results show that the modified silicalite-1 zeolite particles have smaller pore sizes dispersed more uniformly in the active layers of the silicalite-1/PDMS composite membranes and present fewer aggregation and pinholes formed by the accumulation of zeolite particles. The silicalite-1/PDMS composite membranes are all dense and continuous with good homogeneity. To evaluate the pervaporative separation performance of the DCB isomers, the unmodified and modified silicalite-1/PDMS composite membranes have been further tested in single-isomer and binary-isomer systems at 60 °C. The modified silicalite-1/PDMS composite membranes present higher DCB isomer separation factors. The separation factors of the modified silicalite-1/PDMS composite membranes in the binary-isomer systems for p-/o-DCB and p-/m-DCB are 3.53 and 5.63, respectively. The permeate flux of p-DCB through the modified silicalite-1/PDMS composite membranes in the p-/o-DCB binary-isomer system is 116.7 g m-2 h-1 and in the p-/m-DCB binary-isomer system, it is 93.5 g m-2 h-1. The result provides a new approach towards the pervaporative separation of DCB isomers from their mixture for future industrialization applications.
Collapse
Affiliation(s)
- Qiu-Ping He
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology Shanghai 200062 China
- Shanghai Luqiang New Materials Co., Ltd Shanghai 200062 China +86-21-69577696
| | - Ying-Ying Wang
- Shanghai Luqiang New Materials Co., Ltd Shanghai 200062 China +86-21-69577696
- State Key Laboratory of Polyolefin Catalytic Technology and High Performance Material, Shanghai Research Institute of Chemical Industry Co., Ltd Shanghai 200062 China
| | - Peng-Fei Wang
- Shanghai Luqiang New Materials Co., Ltd Shanghai 200062 China +86-21-69577696
- State Key Laboratory of Polyolefin Catalytic Technology and High Performance Material, Shanghai Research Institute of Chemical Industry Co., Ltd Shanghai 200062 China
| | - Xiao-Ming Dou
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology Shanghai 200062 China
| |
Collapse
|
4
|
He Q, Chen W, Wang P, Dou X. Silicalite-1/PDMS Hybrid Membranes on Porous PVDF Supports: Preparation, Structure and Pervaporation Separation of Dichlorobenzene Isomers. Polymers (Basel) 2022; 14:polym14091680. [PMID: 35566851 PMCID: PMC9101242 DOI: 10.3390/polym14091680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Separation of dichlorobenzene (DCB) isomers with high purity by time− and energy−saving methods from their mixtures is still a great challenge in the fine chemical industry. Herein, silicalite-1 zeolites/polydimethylsiloxane (PDMS) hybrid membranes (silicalite-1/PDMS) have been successfully fabricated on the porous polyvinylidene fluoride (PVDF) supports to first investigate the pervaporation separation properties of DCB isomers. The morphology and structure of the silicalite-1 zeolites and the silicalite-1/PDMS/PVDF hybrid membranes were characterized by XRD, FTIR, SEM and BET. The results showed that the active silicalite-1/PDMS layers were dense and continuous without any longitudinal cracks and other defects with the silicalite-1 zeolites content no more than 10%. When the silicalite-1 zeolites content exceeded 10%, the surfaces of the active silicalite-1/PDMS layers became rougher, and silicalite-1 zeolites aggregated to form pile pores. The pervaporation experiments both in single-isomer and binary−isomer systems for the separation of DCB isomers was further carried out at 60 °C. The results showed that the silicalite-1/PDMS/PVDF hybrid membranes with 10% silicalite-1 zeolites content had better DCB selective separation performance than the silicalite-1/α−Al2O3 membranes prepared by template method. The permeate fluxes of the DCB isomers increased in the order of m−DCB < o−DCB < p−DCB both in single-isomer and binary-isomers solutions for the silicalite-1/PDMS/PVDF hybrid membranes. The separation factor of the silicalite-1/PDMS/PVDF hybrid membranes for p/o−DCB was 2.9 and for p/m−DCB was 4.6 in binary system. The permeate fluxes of the silicalite-1/PDMS/PVDF hybrid membranes for p−DCB in p/o−DCB and p/m−DCB binary−isomers solutions were 126.2 g∙m−2∙h−1 and 104.3 g∙m−2∙h−1, respectively. The thickness−normalized pervaporation separation index in p/o−DCB binary−isomers solutions was 4.20 μm∙kg∙m−2∙h−1 and in p/m−DCB binary−isomers solutions was 6.57 μm∙kg∙m−2∙h−1. The results demonstrated that the silicalite-1/PDMS/PVDF hybrid membranes had great potential for pervaporation separation of DCB from their mixtures.
Collapse
Affiliation(s)
- Qiuping He
- Institute of Photonics & Bio-Medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China;
- Shanghai Lvqiang New Materials Co., Ltd., 258 Hengle Road, Shanghai 201806, China
| | - Wei Chen
- Shanghai Lvqiang New Materials Co., Ltd., 258 Hengle Road, Shanghai 201806, China
- State Key Laboratory of Polyolefin Catalytic Technology and High Performance Material, Shanghai Research Institute of Chemical Industry Co., Ltd., 345 Yunling East Road, Shanghai 200062, China
- Correspondence: (W.C.); (P.W.); (X.D.); Tel.: +86-69577696 (W.C.); +86-69577695 (P.W.); +86-69577696 (X.D.)
| | - Pengfei Wang
- Shanghai Lvqiang New Materials Co., Ltd., 258 Hengle Road, Shanghai 201806, China
- State Key Laboratory of Polyolefin Catalytic Technology and High Performance Material, Shanghai Research Institute of Chemical Industry Co., Ltd., 345 Yunling East Road, Shanghai 200062, China
- Correspondence: (W.C.); (P.W.); (X.D.); Tel.: +86-69577696 (W.C.); +86-69577695 (P.W.); +86-69577696 (X.D.)
| | - Xiaoming Dou
- Institute of Photonics & Bio-Medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China;
- Correspondence: (W.C.); (P.W.); (X.D.); Tel.: +86-69577696 (W.C.); +86-69577695 (P.W.); +86-69577696 (X.D.)
| |
Collapse
|
5
|
Zhan X, Zhao X, Gao Z, Ge R, Lu J, Wang L, Li J. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Zhang Q, Zhou M, Liu X, Zhang B. Pebax/two-dimensional MFI nanosheets mixed-matrix membranes for enhanced CO2 separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Guan P, Ren C, Shan H, Cai D, Zhao P, Ma D, Qin P, Li S, Si Z. Boosting the pervaporation performance of PDMS membrane for 1-butanol by MAF-6. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04873-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Liu C, Xue T, Yang Y, Ouyang J, Chen H, Yang S, Li G, Cai D, Si Z, Li S, Qin P. Effect of crosslinker 3-methacryloxypropylmethyldimethoxysilane on UV-crosslinked PDMS-PTFPMS block copolymer membranes for ethanol pervaporation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Rational tuning of the viscosity of membrane solution for the preparation of sub-micron thick PDMS composite membrane for pervaporation of ethanol-water solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Si Z, Liu C, Li G, Wang Z, Li J, Xue T, Yang S, Cai D, Li S, Zhao H, Qin P, Tan T. Epoxide-based PDMS membranes with an ultrashort and controllable membrane-forming process for 1-butanol/water pervaporation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Synthesis of PMHS–PDMS composite membranes embedded with silica nanoparticles and their application to separate of DMSO from aqueous solutions. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03355-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
The in-situ synthesis of a high-flux ZIF-8/polydimethylsiloxane mixed matrix membrane for n-butanol pervaporation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Zhu T, Xu S, Yu F, Yu X, Wang Y. ZIF-8@GO composites incorporated polydimethylsiloxane membrane with prominent separation performance for ethanol recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117681] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Si Z, Cai D, Li S, Li G, Wang Z, Qin P. A high-efficiency diffusion process in carbonized ZIF-8 incorporated mixed matrix membrane for n-butanol recovery. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Esmaeili N, Boyd SE, Brown CL, Mac A Gray E, Webb CJ. Improving the Gas-Separation Properties of PVAc-Zeolite 4A Mixed-Matrix Membranes through Nano-Sizing and Silanation of the Zeolite. Chemphyschem 2019; 20:1590-1606. [PMID: 31062462 DOI: 10.1002/cphc.201900423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Indexed: 11/08/2022]
Abstract
Mixed-matrix membranes containing synthesised nano-sized zeolite 4A and PVAc were fabricated to investigate the effect of zeolite loading on membrane morphology, polymer-filler interaction, thermal stability and gas separation properties. SEM studies revealed that, although the membranes with 40 wt % nano-sized zeolite particles were distributed uniformly through the polymer matrix without voids, the membranes with 15 wt % zeolite loading showed agglomeration. With increasing zeolite content, the thermal stability improved, the permeability decreased and the selectivity increased. The effect of silanation on dispersion of 15 wt % zeolite 4A nanoparticles through PVAc was investigated by post-synthesis modification of the zeolite with 3-Aminopropyl(diethoxy)methylsilane. Modification of the nanoparticles improved their dispersion in PVAc, resulting in higher thermal stability than the corresponding unmodified zeolite membrane. Modification also decreased the rigidity of the membrane. Partial pore blockage of the modified zeolite nanoparticles after silanation caused a further decrease in permeability, compared to the 15 wt % unmodified zeolite membrane.
Collapse
Affiliation(s)
- Nazila Esmaeili
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, 4111, Australia
| | - Sue E Boyd
- Environmental Futures Research Institute, Griffith University, Nathan, 4111, Australia
| | - Christopher L Brown
- Environmental Futures Research Institute, Griffith University, Nathan, 4111, Australia
| | - Evan Mac A Gray
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, 4111, Australia
| | - Colin J Webb
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, 4111, Australia
| |
Collapse
|
16
|
Si Z, Cai D, Li S, Zhang C, Qin P, Tan T. Carbonized ZIF-8 incorporated mixed matrix membrane for stable ABE recovery from fermentation broth. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Poly(vinyl alcohol)/ZSM-5 zeolite mixed matrix membranes for pervaporation dehydration of isopropanol/water solution through response surface methodology. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
León JA, Fontalvo J. PDMS modified membranes by 1-dodecanol and its effect on ethanol removal by pervaporation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Kansara AM, Prajapati PK, Aswal VK, Singh PS. Structure-property interplay of asymmetric membranes comprising of soft polydimethylsiloxane chains and hard silica nanomaterials. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.11.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
|
22
|
Ye H, Zhang X, Zhang Z, Song B, Song W. Application of polyurethane membrane with surface modified ZSM-5 for pervaporation of phenol/water mixture. JOURNAL OF POLYMER ENGINEERING 2017. [DOI: 10.1515/polyeng-2016-0358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the present work, β-cyclodextrin was grafted to the surface of ZSM-5 via 2,3-epoxypropyl trimethylammonium chloride (ETMAC) and epichlorohydrin (EPI) as the bridging agent by ion exchange and sequential grafting. The mixed matrix membranes were prepared using polyurethane (PU) and ZSM-5 before and after modification. Modified ZSM-5 and corresponding MMM were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscope (SEM). These membranes were applied for the removal of phenol from aqueous solution in pervaporation process. The results showed that modified ZSM-5 dispersed homogeneously in polymer. The flux and pervaporation separation index of PU increased greatly with a limited decrease in selectivity by the addition of modified ZSM-5. The increased feed temperature enhanced both the flux and separation factor of PU and modified PU membranes.
Collapse
|
23
|
Hu S, Ren W, Cai D, Hughes TC, Qin P, Tan T. A mixed matrix membrane for butanol pervaporation based on micron-sized silicalite-1 as macro-crosslinkers. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.03.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Alberto M, Luque-Alled JM, Gao L, Iliut M, Prestat E, Newman L, Haigh SJ, Vijayaraghavan A, Budd PM, Gorgojo P. Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillers. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.061] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Zhou H, Zhang J, Wan Y, Jin W. Fabrication of high silicalite-1 content filled PDMS thin composite pervaporation membrane for the separation of ethanol from aqueous solutions. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.11.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Zhou H, Su Y, Chen X, Luo J, Wan Y. High-performance PDMS membranes for pervaporative removal of VOCs from water: The role of alkyl grafting. J Appl Polym Sci 2016. [DOI: 10.1002/app.43700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 China
- University of Chinese Academy of Sciences; 19A Yuquanlu, Shijingshan District Beijing 100049 China
| | - Yi Su
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 China
| |
Collapse
|
27
|
Zhuang X, Chen X, Su Y, Luo J, Feng S, Zhou H, Wan Y. Surface modification of silicalite-1 with alkoxysilanes to improve the performance of PDMS/silicalite-1 pervaporation membranes: Preparation, characterization and modeling. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.10.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|