1
|
Alyami AY, Mahmood A. Synthesis, characterization and application of chitosan functionalized and functional graphene oxide membranes for desalination of water by pervaporation. ENVIRONMENTAL RESEARCH 2024; 251:118589. [PMID: 38428560 DOI: 10.1016/j.envres.2024.118589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
The use of graphene sheets in water treatment is increasing due to its adsorption capacity, reactivity, catalytic action and surface area. The challenges linked to wastewater treatment are vast due to the constant influx of various pollutants. Can the challenges of water desalination and purification be encountered by graphene-based composites and membranes?.The current work describes the synthesis of graphene oxide (GO) using modified Hummers' method. GO was functionalized with chitosan and used as adsorbents. On the other hand, it was reported that the surface of thin-film-composite (TFC) polyamide membranes was modified in order to desalinate highly saline water using pervaporation. The findings showed that GO synthesized by modified Hummers' method has a greater capacity for the adsorption of sodium ion and have better regeneration performance. Functionalization with chitosan increased adsorption capacity from 680.2 to 740.5 mg/g at the initial concentration of 45,000 mg/l of Na+ ions. On the other hand, modification in membrane comprises the chlorine treatment of surface of polyamide membrane. Layer-by-layer (LbL) deposition of positively charged polyethyleneimine (PEI) and negatively charged graphene oxide (GO) was followed. The PEI/GO LbL membrane's pure water flux was twice as high as compare to the original membrane. The synthesized membrane was tested against the aqueous solutions containing Na2SO4, MgSO4, NaCl and MgCl2 salts for their desalination. At different concentrations, a water flux of 8.9 kg/m2h with a huge salt rejection (>99.9%) was attained for every tested salt. It was observed that CS functionalized GO and GO membrane showed higher adsorption capacity and improved regeneration performance can be measured as an operational and active adsorbent for sea water desalination.
Collapse
Affiliation(s)
- Abeer Yousef Alyami
- Department of Chemistry, College of Science and Arts, Najran University, PO Box, 1988, Najran, 11001, Saudi Arabia
| | - Abid Mahmood
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad-38000, Pakistan.
| |
Collapse
|
2
|
Li Z, Hu K, Feng X. Hollow fiber membranes comprising of polyvinylamine/polydopamine active layers and a polyvinylidene fluoride substrate for pervaporative concentration of KAc solutions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
3
|
Plisko T, Burts K, Zolotarev A, Bildyukevich A, Dmitrenko M, Kuzminova A, Ermakov S, Penkova A. Development and Investigation of Hierarchically Structured Thin-Film Nanocomposite Membranes from Polyamide/Chitosan Succinate Embedded with a Metal-Organic Framework (Fe-BTC) for Pervaporation. MEMBRANES 2022; 12:967. [PMID: 36295726 PMCID: PMC9611024 DOI: 10.3390/membranes12100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Thin-film composite membranes (TFC) obtained by the formation of a selective layer on a porous membrane-substrate via interfacial polymerization (IP) are indispensable for separation procedures in reverse osmosis, nanofiltration, pervaporation, and gas separation. Achieving high selectivity and permeability for TFC membranes is still one of the main challenges in membrane science and technology. This study focuses on the development of thin film nanocomposite (TFN) membranes with a hierarchically structured polyamide (PA)/chitosan succinate (ChS) selective layer embedded with a metal-organic framework of iron 1,3,5-benzenetricarboxylate (Fe-BTC) for the enhanced pervaporation dehydration of isopropanol. The aim of this work was to study the effect of Fe-BTC incorporation into the ChS interlayer and PA selective layer, obtained via IP, on the structure, properties, and performance of pervaporation TFN membranes. The structure and hydrophilicity of the developed TFN membranes were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM), along with water contact angle measurements. The developed TFN membranes were studied in the pervaporation dehydration of isopropanol (12-30 wt % water). It was found that incorporation of Fe-BTC into the ChS interlayer yielded the formation of a smoother, more uniform, and defect-free PA ultrathin selective layer via IP, due to the amorpho-crystalline structure of particles serving as the amine storage reservoir and led to an increase in membrane selectivity toward water, and a slight decrease in permeation flux compared to the ChS interlayered TFC membranes. The best pervaporation performance was demonstrated by the TFN membrane with a ChS-Fe-BTC interlayer and the addition of 0.03 wt % Fe-BTC in the PA layer, yielding a permeation flux of 197-826 g·m-2·h-1 and 98.50-99.99 wt % water in the permeate, in the pervaporation separation of isopropanol/water mixtures (12-30 wt % water).
Collapse
Affiliation(s)
- Tatiana Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Katsiaryna Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Andrey Zolotarev
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Lee JY, Huang TY, Belle Marie Yap Ang M, Huang SH, Tsai HA, Jeng RJ. Effects of monomer rigidity on microstructures and properties of novel polyamide thin-film composite membranes prepared through interfacial polymerization for pervaporation dehydration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Xu Q, Wang H, Zhang M, Wang J, An X, Hao X, Du X, Zhang Z, Li Y. Pervaporation Removal of Pyridine from Saline Pyridine/Water Effluents Using PEBA-2533 Membranes: Experiment and Simulation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qian Xu
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Hongyun Wang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Meng Zhang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Jie Wang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaowei An
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiao Du
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Zhonglin Zhang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yongguo Li
- China Institute for Radiation Protection, Taiyuan 030006, P. R. China
| |
Collapse
|
6
|
Du C, Runhong Du J, Feng X, Du F, Cheng F, Ali ME. Pervaporation-assisted desalination of seawater reverse osmosis brine. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Lakshmy KS, Lal D, Nair A, Babu A, Das H, Govind N, Dmitrenko M, Kuzminova A, Korniak A, Penkova A, Tharayil A, Thomas S. Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers (Basel) 2022; 14:polym14081604. [PMID: 35458354 PMCID: PMC9029804 DOI: 10.3390/polym14081604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pervaporation is one of the most active topics in membrane research, and it has time and again proven to be an essential component for chemical separation. It has been employed in the removal of impurities from raw materials, separation of products and by-products after reaction, and separation of pollutants from water. Given the global problem of water pollution, this approach is efficient in removing hazardous substances from water bodies. Conventional processes are based on thermodynamic equilibria involving a phase transition such as distillation and liquid-liquid extraction. These techniques have a relatively low efficacy and nowadays they are not recommended because it is not sustainable in terms of energy consumption and/or waste generation. Pervaporation emerged in the 1980s and is now becoming a popular membrane separation technology because of its intrinsic features such as low energy requirements, cheap separation costs, and good quality product output. The focus of this review is on current developments in pervaporation, mass transport in membranes, material selection, fabrication and characterization techniques, and applications of various membranes in the separation of chemicals from water.
Collapse
Affiliation(s)
- Kadavil Subhash Lakshmy
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Devika Lal
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Anandu Nair
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Allan Babu
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Haritha Das
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Neethu Govind
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Aleksandra Korniak
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
- Correspondence: (A.P.); (A.T.)
| | - Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
- Correspondence: (A.P.); (A.T.)
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| |
Collapse
|
8
|
A Review of Recent Developments of Pervaporation Membranes for Ethylene Glycol Purification. MEMBRANES 2022; 12:membranes12030312. [PMID: 35323787 PMCID: PMC8956067 DOI: 10.3390/membranes12030312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
Ethylene glycol (EG) is an essential reagent in the chemical industry including polyester and antifreeze manufacture. In view of the constantly expanding field of EG applications, the search for and implementation of novel economical and environmentally friendly technologies for the separation of organic and aqueous–organic solutions remain an issue. Pervaporation is currently known to significantly reduce the energy and resource consumption of a manufacturer when obtaining high-purity components using automatic, easily scalable, and compact equipment. This review provides an overview of the current research and advances in the pervaporation of EG-containing mixtures (water/EG and methanol/EG), as well as a detailed analysis of the relationship of pervaporation performance with the membrane structure and properties of membrane materials. It is discussed that a controlled change in the structure and transport properties of a membrane is possible using modification methods such as treatment with organic solvents, introduction of nonvolatile additives, polymer blending, crosslinking, and heat treatment. The use of various modifiers is also described, and a particularly positive effect of membrane modification on the separation selectivity is highlighted. Among various polymers, hydrophilic PVA-based membranes stand out for optimal transport properties that they offer for EG dehydrating. Fabricating of TFC membranes with a microporous support layer appears to be a viable approach to the development of productivity without selectivity loss. Special attention is given to the recovery of methanol from EG, including extensive studies of the separation performance of polymer membranes. Membranes based on a CS/PVP blend with inorganic modifiers are specifically promising for methanol removal. With regard to polymer wettability properties, it is worth mentioning that membranes based on hydrophobic polymers (e.g., SPEEK, PBI/PEI, PEC, PPO) are capable of exhibiting much higher selectivity due to diffusion limitations.
Collapse
|
9
|
Wang Y, Ban Y, Hu Z, Zhao Y, Zheng M, Yang W, Zhang T. Hetero‐Lattice Intergrown and Robust MOF Membranes for Polyol Upgrading. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuecheng Wang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Yujie Ban
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Ziyi Hu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Yang Zhao
- Dalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| | - Mingyuan Zheng
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Weishen Yang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| |
Collapse
|
10
|
Wang Y, Ban Y, Hu Z, Zhao Y, Zheng M, Yang W, Zhang T. Hetero-lattice intergrown and robust MOF membranes for polyol upgrading. Angew Chem Int Ed Engl 2021; 61:e202114479. [PMID: 34939272 DOI: 10.1002/anie.202114479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/09/2022]
Abstract
Metal-organic framework membranes are frequently used in gas separations, but rare in pervaporation for liquid chemical upgrading, especially for separating water from polyols, due to lack of highly compact and robust micro-architecture. Here, we report hetero-lattice intergrown membranes in which amino-MIL-101 (Cr) particles embedded into the micro-gaps of MIL-53 (Al) rod arrays after secondary growth. By means of high-resolution TEM and two-dimensional topologic simulation, the connection between these two distinct MOF lattices at molecular-level and their crystallographic geometry harmony is identified, which leads to a close-knit structure at crystal boundaries of membranes. Typically, the membrane shows a separation factor as high as 13,000 for 90/10 ethanediol/water solution in pervaporation, yields polymer-grade ethanediol, and saves ca. 32% of energy consumption vs. vacuum distillation. It has a highly robust micro-architecture, with great tolerance to high pressure, durability against ultrasonic therapy and long-term separation stability over 600 h.
Collapse
Affiliation(s)
- Yuecheng Wang
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Yujie Ban
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Ziyi Hu
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Yang Zhao
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Mingyuan Zheng
- Dalian Institute of Chemical Physics, CAS Key Laboratory of Science and Technology on Applied Catalysis, CHINA
| | - Weishen Yang
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, 457 Zhongshan Road, 116023, Dalian, CHINA
| | - Tao Zhang
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| |
Collapse
|
11
|
Concentration of potassium acetate solutions via sweeping gas pervaporation using TFC membranes comprising of a PDA sublayer and PEI/PAA bilayers. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Li P, Li YX, Wu YZ, Xu ZL, Zhang HZ, Gao P, Xu SJ. Thin-film nanocomposite NF membrane with GO on macroporous hollow fiber ceramic substrate for efficient heavy metals removal. ENVIRONMENTAL RESEARCH 2021; 197:111040. [PMID: 33771510 DOI: 10.1016/j.envres.2021.111040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The ceramic membrane has been widely used in the wastewater treatment based on the chemical resistance and superior separation performance. A robust and defect-free thin-film nanocomposite (TFN) nanofiltration (NF) membrane on the macroporous hollow fiber ceramic (HFC) substrate was novelly developed for heavy metals removal. Before interfacial polymerization (IP), the aqueous solution of graphene oxide (GO) grafted with ethylenediamine (EDA) was deposited on the HFC substrate by vacuum filtration. Then, a thin polyamide (PA) film was fabricated by EDA and 1,3,5-trimesoyl chloride (TMC), followed by heat treatment. The effects of GO content and EDA concentration on the performance of the NF membrane have been systematically investigated. The results showed that when the GO content was 0.015 mg·mL-1 and the EDA concentration was 0.75 wt.%, the as-prepared eGO3/PA-HFC membrane had a rejection rate of 94.12% for MgCl2 and a pure water flux of 18.03 L·m-2·h-1. Additionally, the removal ability of eGO3/PA-HFC membranes for heavy metal ions was satisfactory (93.33%, 92.73%, 90.45% and 88.35% for Zn2+, Cu2+, Ni2+ and Pb2+, respectively). The study explored further that it was efficient and stable for heavy metal ions removal during 30 h in the simulated tap water and mining wastewater, which indicated that the eGO/PA-HFC membrane has great application potential in wastewater treatment.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu-Xuan Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu-Zhe Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Hai-Zhen Zhang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Gao
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Sun-Jie Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
13
|
Ang MBMY, Marquez JAD, Huang SH, Lee KR. A recent review of developmental trends in fabricating pervaporation membranes through interfacial polymerization and future prospects. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Layer-by-layer polyamide thin film nanocomposite membrane: synthesis, characterization and using as pervaporation membrane to separate methyl tertiary butyl ether/methanol mixture. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02479-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
De Guzman MR, Ang MBMY, Yeh YL, Yang HL, Huang SH, Lee KR. Improved pervaporation efficiency of thin-film composite polyamide membranes fabricated through acetone-assisted interfacial polymerization. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Halakoo E, Feng X. Self-assembled membranes from polyethylenimine and graphene oxide for pervaporation dehydration of ethylene glycol. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118583] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Ang MBMY, Huang SH, Li YC, Cahatol ATC, Tayo LL, Hung WS, Tsai HA, Hu CC, Lee KR, Lai JY. High-performance thin-film composite polyetheramide membranes for the dehydration of tetrahydrofuran. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Fabrication, Properties, Performances, and Separation Application of Polymeric Pervaporation Membranes: A Review. Polymers (Basel) 2020; 12:polym12071466. [PMID: 32629862 PMCID: PMC7408584 DOI: 10.3390/polym12071466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 11/24/2022] Open
Abstract
Membrane separation technologies have attracted great attentions in chemical engineering, food science, analytical science, and environmental science. Compared to traditional membrane separation techniques like reverse osmosis (RO), ultrafiltration (UF), electrodialysis (ED) and others, pervaporation (PV)-based membrane separation shows not only mutual advantages such as small floor area, simplicity, and flexibility, but also unique characteristics including low cost as well as high energy and separation efficiency. Recently, different polymer, ceramic and composite membranes have shown promising separation applications through the PV-based techniques. To show the importance of PV for membrane separation applications, we present recent advances in the fabrication, properties and performances of polymeric membranes for PV separation of various chemicals in petrochemical, desalination, medicine, food, environmental protection, and other industrial fields. To promote the easy understanding of readers, the preparation methods and the PV separation mechanisms of various polymer membranes are introduced and discussed in detail. This work will be helpful for developing novel functional polymer-based membranes and facile techniques to promote the applications of PV techniques in different fields.
Collapse
|
19
|
Halakoo E, Feng X. Layer-by-layer assembled membranes from graphene oxide and polyethyleneimine for ethanol and isopropanol dehydration. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115488] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
State-of-the-art modification of polymeric membranes by PEO and PEG for carbon dioxide separation: A review of the current status and future perspectives. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Novel thin-film composite pervaporation membrane with controllable crosslinking degree for enhanced water/alcohol separation performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Ang MBMY, Huang SH, Chang MW, Lai CL, Tsai HA, Hung WS, Hu CC, Lee KR. Ultraviolet-initiated graft polymerization of acrylic acid onto thin-film polyamide surface for improved ethanol dehydration performance of pervaporation membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116155] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Teng X, Guo Y, Liu D, Li G, Yu C, Dai J. A polydopamine-coated polyamide thin film composite membrane with enhanced selectivity and stability for vanadium redox flow battery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117906] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Halakoo E, Feng X. Layer-by-layer assembly of polyethyleneimine/graphene oxide membranes for desalination of high-salinity water via pervaporation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116077] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Zia ul Mustafa M, bin Mukhtar H, Md Nordin NAH, Mannan HA, Nasir R, Fazil N. Recent Developments and Applications of Ionic Liquids in Gas Separation Membranes. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800519] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Muhammad Zia ul Mustafa
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Bandar Seri Iskandar Perak Malaysia
| | - Hilmi bin Mukhtar
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Bandar Seri Iskandar Perak Malaysia
| | - Nik Abdul Hadi Md Nordin
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Bandar Seri Iskandar Perak Malaysia
| | - Hafiz Abdul Mannan
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Bandar Seri Iskandar Perak Malaysia
| | - Rizwan Nasir
- University of JeddahDepartment of Chemical Engineering Jeddah Saudi Arabia
| | - Nabilah Fazil
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Bandar Seri Iskandar Perak Malaysia
| |
Collapse
|
26
|
An QF, Ang MBMY, Huang YH, Huang SH, Chiao YH, Lai CL, Tsai HA, Hung WS, Hu CC, Wu YP, Lee KR. Microstructural characterization and evaluation of pervaporation performance of thin-film composite membranes fabricated through interfacial polymerization on hydrolyzed polyacrylonitrile substrate. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Zarghami S, Mohammadi T, Sadrzadeh M. Preparation, characterization and fouling analysis of in-air hydrophilic/underwater oleophobic bio-inspired polydopamine coated PES membranes for oily wastewater treatment. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Wu JK, Ye CC, Zhang WH, Wang NX, Lee KR, An QF. Construction of well-arranged graphene oxide/polyelectrolyte complex nanoparticles membranes for pervaporation ethylene glycol dehydration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Dudek G, Krasowska M, Turczyn R, Strzelewicz A, Djurado D, Pouget S. Clustering analysis for pervaporation performance assessment of alginate hybrid membranes in dehydration of ethanol. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Cheng C, Li P, Zhang T, Wang X, Hsiao BS. Enhanced pervaporation performance of polyamide membrane with synergistic effect of porous nanofibrous support and trace graphene oxide lamellae. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Chaudhari S, Kwon Y, Shon M, Nam S, Park Y. Stability and pervaporation characteristics of PVA and its blend with PVAm membranes in a ternary feed mixture containing highly reactive epichlorohydrin. RSC Adv 2019; 9:5908-5917. [PMID: 35517247 PMCID: PMC9060864 DOI: 10.1039/c8ra07136e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/11/2019] [Indexed: 02/03/2023] Open
Abstract
In order to find an alternative for classical distillation in the recovery of ECH/IPA from azeotropic ECH/IPA/water (50/30/20 w/w, %) mixtures, a pervaporation process has been applied. Membranes from the crosslinking of poly(vinyl alcohol)/poly(vinyl amine) (PVA/PVAm) were prepared, and then the membrane stability and pervaporation efficiency of the crosslinked PVA/PVAm membranes were studied for highly reactive ECH systems containing a ternary feed mixture. From the Fourier-transform infrared (FT-IR) spectroscopy analysis, it was observed that all of the membranes were chemically stable for 15 days of immersion in a 50 : 30 : 20 ECH/IPA/water (w/w, %) feed mixture at 60 °C. The degree of membrane swelling increased with increasing PVAm content in the membrane composition, water content in the feed composition, and feed temperature, which was attributed to the increase in the number of hydrophilic sites in the membrane. The field-emission scanning electron microscopy (FE-SEM) study revealed that higher PVAm content membranes (PVAm1.0 and PVAm1.5) show polymer phase extraction in ECH/IPA/water (50 : 30 : 20) (w/w, %) at 60 °C in long-term stability tests. The pervaporation dehydration characteristics for all of the membranes with the feed comprising an ECH/IPA/water (50 : 30 : 20 by weight) azeotropic mixture at 30 °C were examined and excellent pervaporation dehydration efficiency was found. Quantitatively, the flux increased from 0.025 to 0.32 kg (m2 h)-1 and the separation factor decreased from 1908 to 60 with increasing PVAm content in the blended membrane.
Collapse
Affiliation(s)
- Shivshankar Chaudhari
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - YongSung Kwon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - MinYoung Shon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - SeungEun Nam
- Center for Membranes, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 305-600 Korea
| | - YouIn Park
- Center for Membranes, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 305-600 Korea
| |
Collapse
|
32
|
Alibakhshian F, Pourafshari Chenar M, Asghari M. Thin film composite membranes with desirable support layer for MeOH/MTBE pervaporation. J Appl Polym Sci 2019. [DOI: 10.1002/app.47519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Farzaneh Alibakhshian
- Separation Process Research Group (SPRG), Department of Engineering; University of Kashan; Kashan Iran
| | - Mahdi Pourafshari Chenar
- Chemical Engineering Department, Faculty of Engineering; Ferdowsi University of Mashhad; Mashhad Iran
- Research Center of Membrane Processes and Membrane, Faculty of Engineering; Ferdowsi University of Mashhad; Mashhad Iran
| | - Morteza Asghari
- Separation Process Research Group (SPRG), Department of Engineering; University of Kashan; Kashan Iran
- Energy Research Institute, University of Kashan; Ghotb-e-Ravandi Ave., Kashan Iran
| |
Collapse
|
33
|
Wang P, Liu Z, Li X, Peng J, Hu W, Liu B. Toward enhanced conductivity of high-temperature proton exchange membranes: development of novel PIM-1 reinforced PBI alloy membranes. Chem Commun (Camb) 2019; 55:6491-6494. [DOI: 10.1039/c9cc02102g] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polymers of intrinsic microporosity are for the first time incorporated into PBIs to form some novel alloys for HT-PEMFC applications.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Zhenchao Liu
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Xiaobai Li
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Jinwu Peng
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Wei Hu
- College of Chemical Engineering
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Baijun Liu
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| |
Collapse
|
34
|
Solvent resistant nanofiltration membranes using EDA-XDA co-crosslinked poly(ether imide). Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Bio-inspired deposition of polydopamine on PVDF followed by interfacial cross-linking with trimesoyl chloride as means of preparing composite membranes for isopropanol dehydration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Chen M, Soyekwo F, Zhang Q, Hu C, Zhu A, Liu Q. Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.02.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Integrated polyamide thin-film nanofibrous composite membrane regulated by functionalized interlayer for efficient water/isopropanol separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.02.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Zou X, Zhu G. Microporous Organic Materials for Membrane-Based Gas Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1700750. [PMID: 29064126 DOI: 10.1002/adma.201700750] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/20/2017] [Indexed: 05/28/2023]
Abstract
Membrane materials with excellent selectivity and high permeability are crucial to efficient membrane gas separation. Microporous organic materials have evolved as an alternative candidate for fabricating membranes due to their inherent attributes, such as permanent porosity, high surface area, and good processability. Herein, a unique pore-chemistry concept for the designed synthesis of microporous organic membranes, with an emphasis on the relationship between pore structures and membrane performances, is introduced. The latest advances in microporous organic materials for potential membrane application in gas separation of H2 , CO2 , O2 , and other industrially relevant gases are summarized. Representative examples of the recent progress in highly selective and permeable membranes are highlighted with some fundamental analyses from pore characteristics, followed by a brief perspective on future research directions.
Collapse
Affiliation(s)
- Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
40
|
Yong WF, Ho YX, Chung TS. Nanoparticles Embedded in Amphiphilic Membranes for Carbon Dioxide Separation and Dehumidification. CHEMSUSCHEM 2017; 10:4046-4055. [PMID: 28834318 DOI: 10.1002/cssc.201701405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Polymers containing ethylene oxide (EO) groups have gained significant interest as the EO groups have favorable interactions with polar molecules such as H2 O, quadrupolar molecules such as CO2 , and metal ions. However, the main challenges of poly(ethylene oxide) (PEO) membranes are their weak mechanical properties and high crystallinity nature. The amphiphilic copolymer made from PEO terephthalate and poly(butylene terephthalate) (PEOT/PBT) comprises both hydrophilic and hydrophobic segments. The hydrophilic PEOT segment is thermosensitive, which facilities gas transports whereas the hydrophobic PBT segment is rigid, which provides mechanical robustness. This work demonstrates a new strategy to design amphiphilic mixed matrix membranes (MMMs) by incorporating zeolitic imidazolate framework, ZIF-71, into the PEOT/PBT copolymer. The resultant membrane shows an enhanced CO2 permeability with an ideal CO2 /N2 selectivity surpassing the original PEOT/PBT and Robeson's Upper bound line. The nanoparticles-embedded amphiphilic membranes exhibit characteristics of high transparency and mechanical robustness. Mechanically strong composite hollow fiber membranes consisting of PEOT/PBT/ZIF-71 as the selective layer were also prepared. The resultant hollow fibers possess an excellent CO2 permeance of 131 GPU (gas permeation units), CO2 /N2 selectivity of 52.6, H2 O permeance of 9300 GPU and H2 O/N2 selectivity of 3700, showing great potential for industrial CO2 capture and dehumidification.
Collapse
Affiliation(s)
- Wai Fen Yong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Yan Xun Ho
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| |
Collapse
|
41
|
Tsai HA, Wang TY, Huang SH, Hu CC, Hung WS, Lee KR, Lai JY. The preparation of polyamide/polyacrylonitrile thin film composite hollow fiber membranes for dehydration of ethanol mixtures. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.06.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Liu Y, Zhang Z, Lv H, Qin Y, Deng L. Surface modification of chitosan film via polydopamine coating to promote biomineralization in bone tissue engineering. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517713228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chitosan-based material has been widely used as bone substitute due to its good biocompatibility and biodegradability. However, the hydrophobic surface of chitosan film constrains the osteogenesis mineralization in the process of bone regeneration. For this reason, we develop a novel polydopamine-modified chitosan film suitable for bone tissue engineering applications by a simple and feasible route in this study. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm the process of surface modification. For comparison, surface wettability, the capacity of mineralization in vitro, and biocompatibility of the chitosan film and the polydopamine-modified chitosan film were assessed. Research results indicate that the polydopamine-modified chitosan film has good hydrophilicity. It is very evident that the polydopamine treatment significantly influences the biomineralization capacity of the chitosan-based substrates, which enhance the growth rate of apatite on the modified chitosan film. Besides, MC3T3-E1 osteoblast experiments demonstrate that the cells can adhere and grow well on the polydopamine-modified chitosan film. It is anticipated that this polydopamine-modified chitosan film, which can be prepared in large quantities simply, should have potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, P.R. China
- Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan, P.R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, P.R. China
| | - Zhongxun Zhang
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, P.R. China
| | - Huilin Lv
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, P.R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, P.R. China
| | - Yong Qin
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, P.R. China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, P.R. China
| |
Collapse
|
43
|
You F, Xu Y, Yang X, Zhang Y, Shao L. Bio-inspired Ni2+-polyphenol hydrophilic network to achieve unconventional high-flux nanofiltration membranes for environmental remediation. Chem Commun (Camb) 2017; 53:6128-6131. [DOI: 10.1039/c7cc02411h] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ni2+-polyphenol network was synthesized as a hydrophilic coating to achieve highly efficient nanofiltration membranes with an unconventional high flux for dye wastewater remediation.
Collapse
Affiliation(s)
- Fangjie You
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE)
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
| | - Yanchao Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE)
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
| | - Xiaobin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE)
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
| | - Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE)
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE)
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
| |
Collapse
|
44
|
Castro-Muñoz R, Fíla V, Dung CT. Mixed Matrix Membranes Based on PIMs for Gas Permeation: Principles, Synthesis, and Current Status. CHEM ENG COMMUN 2016. [DOI: 10.1080/00986445.2016.1273832] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Roberto Castro-Muñoz
- Department of Inorganic Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Vlastimil Fíla
- Department of Inorganic Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Cong Tien Dung
- Department of Chemistry, Faculty of Basic Science, Hanoi University of Mining and Geology, Vietnam
| |
Collapse
|
45
|
Liu J, Hou X, Park HB, Lin H. High-Performance Polymers for Membrane CO 2 /N 2 Separation. Chemistry 2016; 22:15980-15990. [PMID: 27539399 DOI: 10.1002/chem.201603002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 11/05/2022]
Abstract
This Concept examines strategies to design advanced polymers with high CO2 permeability and high CO2 /N2 selectivity, which are the key to the success of membrane technology for CO2 capture from fossil fuel-fired power plants. Specifically, polymers with enhanced CO2 solubility and thus CO2 /N2 selectivity are designed by incorporating CO2 -philic groups in polymers such as poly(ethylene oxide)-containing polymers and poly(ionic liquids); polymers with enhanced CO2 diffusivity and thus CO2 permeability are designed with contorted rigid polymer chains to obtain high free volume, such as polymers with intrinsic microporosity and thermally rearranged polymers. The underlying rationales for materials design are discussed and polymers with promising CO2 /N2 separation properties for CO2 capture from flue gas are highlighted.
Collapse
Affiliation(s)
- Junyi Liu
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Xianda Hou
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Ho Bum Park
- WCU Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, South Korea
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
46
|
Wang T, Qiblawey H, Sivaniah E, Mohammadian A. Novel methodology for facile fabrication of nanofiltration membranes based on nucleophilic nature of polydopamine. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.03.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Ong YK, Shi GM, Le NL, Tang YP, Zuo J, Nunes SP, Chung TS. Recent membrane development for pervaporation processes. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.02.003] [Citation(s) in RCA: 345] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Lin CX, Zhuo YZ, Lai AN, Zhang QG, Zhu AM, Liu QL. Comb-shaped phenolphthalein-based poly(ether sulfone)s as anion exchange membranes for alkaline fuel cells. RSC Adv 2016. [DOI: 10.1039/c5ra22774g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel comb-shaped phenolphthalein-based poly(ether sulfone)s was synthesized for preparing anion exchange membranes (AEMs).
Collapse
Affiliation(s)
- Chen Xiao Lin
- Department of Chemical & Biochemical Engineering
- College of Chemistry & Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Yi Zhi Zhuo
- Department of Chemical & Biochemical Engineering
- College of Chemistry & Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Ao Nan Lai
- Department of Chemical & Biochemical Engineering
- College of Chemistry & Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Qiu Gen Zhang
- Department of Chemical & Biochemical Engineering
- College of Chemistry & Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Ai Mei Zhu
- Department of Chemical & Biochemical Engineering
- College of Chemistry & Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Qing Lin Liu
- Department of Chemical & Biochemical Engineering
- College of Chemistry & Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|
49
|
Dong L, Wang Y, Chen M, Shi D, Li X, Zhang C, Wang H. Enhanced CO2 separation performance of P(PEGMA-co-DEAEMA-co-MMA) copolymer membrane through the synergistic effect of EO groups and amino groups. RSC Adv 2016. [DOI: 10.1039/c6ra10475d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PEDM copolymer membrane showed excellent gas separation performance through synergistic effect of EO and amino.
Collapse
Affiliation(s)
- Liangliang Dong
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yue Wang
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Mingqing Chen
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Dongjian Shi
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Xiaojie Li
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Chunfang Zhang
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Hui Wang
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
50
|
Ingole PG, Choi WK, Baek IH, Lee HK. Highly selective thin film composite hollow fiber membranes for mixed vapor/gas separation. RSC Adv 2015. [DOI: 10.1039/c5ra15199f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, thin film composite membranes have been prepared using an interfacial polymerization method.
Collapse
Affiliation(s)
| | - Won Kil Choi
- Korea Institute of Energy Research
- Daejeon
- Republic of Korea
| | - Il-Hyun Baek
- Korea Institute of Energy Research
- Daejeon
- Republic of Korea
| | - Hyung Keun Lee
- Korea Institute of Energy Research
- Daejeon
- Republic of Korea
| |
Collapse
|