1
|
Recent advances in Poly(ionic liquids) membranes for CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Castruita‐de León G, Montes‐Luna ÁDJ, Yeverino‐Miranda CY, Alvarado‐Tenorio G, Meléndez‐Ortiz HI, Pérez‐Camacho O, García‐Cerda LA. Preparation of polybenzimidazole‐based mixed matrix membranes containing
modified‐COK
‐12 mesoporous silica and evaluation of the mixed‐gas separation performance. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Ángel de Jesús Montes‐Luna
- Centro de Investigación Científica de Yucatán A.C. Unidad de Materiales Mérida Mexico
- Centro de Investigacián en Química Aplicada, Saltillo Coahuila Unidad de Materiales Mexico
| | | | | | | | - Odilia Pérez‐Camacho
- Centro de Investigacián en Química Aplicada, Saltillo Coahuila Unidad de Materiales Mexico
| | | |
Collapse
|
3
|
Imidazolium-based poly(ionic liquid)/ionic liquid solutions: Rheology, structuration and ionic transport properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Alentiev AY, Ryzhikh VE, Belov NA. Polymer Materials for Membrane Separation of Gas Mixtures Containing CO2. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
5
|
Key Applications and Potential Limitations of Ionic Liquid Membranes in the Gas Separation Process of CO 2, CH 4, N 2, H 2 or Mixtures of These Gases from Various Gas Streams. Molecules 2020; 25:molecules25184274. [PMID: 32961921 PMCID: PMC7570638 DOI: 10.3390/molecules25184274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/05/2020] [Accepted: 09/12/2020] [Indexed: 11/23/2022] Open
Abstract
Heightened levels of carbon dioxide (CO2) and other greenhouse gases (GHGs) have prompted research into techniques for their capture and separation, including membrane separation, chemical looping, and cryogenic distillation. Ionic liquids, due to their negligible vapour pressure, thermal stability, and broad electrochemical stability have expanded their application in gas separations. This work provides an overview of the recent developments and applications of ionic liquid membranes (ILMs) for gas separation by focusing on the separation of carbon dioxide (CO2), methane (CH4), nitrogen (N2), hydrogen (H2), or mixtures of these gases from various gas streams. The three general types of ILMs, such as supported ionic liquid membranes (SILMs), ionic liquid polymeric membranes (ILPMs), and ionic liquid mixed-matrix membranes (ILMMMs) for the separation of various mixed gas systems, are discussed in detail. Furthermore, issues, challenges, computational studies and future perspectives for ILMs are also considered. The results of the analysis show that SILMs, ILPMs, and the ILMMs are very promising membranes that have great potential in gas separation processes. They offer a wide range of permeabilities and selectivities for CO2, CH4, N2, H2 or mixtures of these gases. In addition, a comparison was made based on the selectivity and permeability of SILMs, ILPMs, and ILMMMs for CO2/CH4 separation based on a Robeson’s upper bound curves.
Collapse
|
6
|
Zhang SY, Zhuang Q, Zhang M, Wang H, Gao Z, Sun JK, Yuan J. Poly(ionic liquid) composites. Chem Soc Rev 2020; 49:1726-1755. [DOI: 10.1039/c8cs00938d] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review highlights recent advances in the development of poly(ionic liquid)-based composites for diverse materials applications.
Collapse
Affiliation(s)
- Su-Yun Zhang
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
- College of Physics and Optoelectronic Engineering
| | - Qiang Zhuang
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Miao Zhang
- Department of Materials and Environmental Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education)
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin
| | - Zhiming Gao
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
| | - Jian-Ke Sun
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| |
Collapse
|
7
|
Gouveia ASL, Ventaja L, Tomé LC, Marrucho IM. Towards Biohydrogen Separation Using Poly(Ionic Liquid)/Ionic Liquid Composite Membranes. MEMBRANES 2018; 8:membranes8040124. [PMID: 30513852 PMCID: PMC6316304 DOI: 10.3390/membranes8040124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 11/16/2022]
Abstract
Considering the high potential of hydrogen (H2) as a clean energy carrier, the implementation of high performance and cost-effective biohydrogen (bioH2) purification techniques is of vital importance, particularly in fuel cell applications. As membrane technology is a potentially energy-saving solution to obtain high-quality biohydrogen, the most promising poly(ionic liquid) (PIL)–ionic liquid (IL) composite membranes that had previously been studied by our group for CO2/N2 separation, containing pyrrolidinium-based PILs with fluorinated or cyano-functionalized anions, were chosen as the starting point to explore the potential of PIL–IL membranes for CO2/H2 separation. The CO2 and H2 permeation properties at the typical conditions of biohydrogen production (T = 308 K and 100 kPa of feed pressure) were measured and discussed. PIL–IL composites prepared with the [C(CN)3]− anion showed higher CO2/H2 selectivity than those containing the [NTf2]− anion. All the membranes revealed CO2/H2 separation performances above the upper bound for this specific separation, highlighting the composite incorporating 60 wt % of [C2mim][C(CN)3] IL.
Collapse
Affiliation(s)
- Andreia S L Gouveia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Lucas Ventaja
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Liliana C Tomé
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabel M Marrucho
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
8
|
Vollas A, Chouliaras T, Deimede V, Ioannides T, Kallitsis J. New Pyridinium Type Poly(Ionic Liquids) as Membranes for CO₂ Separation. Polymers (Basel) 2018; 10:polym10080912. [PMID: 30960837 PMCID: PMC6403706 DOI: 10.3390/polym10080912] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 11/23/2022] Open
Abstract
New pyridinium based PILs have been prepared by modification of their precursors based on high molecular weight aromatic polyethers bearing main chain pyridine units. The proposed methodology involves the conversion of the precursors to their ionic analogues via N-methylation reaction, followed by anion exchange methathesis reaction to result in PILs with the desirable anions (tetrafluoroborate and bis(trifluoromethylsulfonyl)imide). These PILs show excellent thermal stability, excellent mechanical properties, and most importantly can form very thin, free standing films with minimum thickness of 3 μm. As expected, the PIL containing the TFSI− anion showed improved CO2 and CH4 permeabilities compared to its analogue containing the BF4−. PIL-IL composites membranes have also been prepared using the same PIL and different percentages of pyridinium based IL where it was shown that the membrane with the highest IL weight percentage (45 wt %) showed the highest CO2 permeability (11.8 Barrer) and a high CO2/CH4 ideal selectivity of 35 at room temperature.
Collapse
Affiliation(s)
| | | | - Valadoula Deimede
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece.
| | - Theophilos Ioannides
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), GR-26504 Patras, Greece.
| | - Joannis Kallitsis
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece.
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), GR-26504 Patras, Greece.
| |
Collapse
|
9
|
Nagase Y, Suleimenova B, Umeda C, Taira K, Oda T, Suzuki S, Okamura Y, Koguchi S. Syntheses of aromatic polymers containing imidazolium moiety and the surface modification of a highly gas permeable membrane using the nanosheets. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Fuenzalida F, Aravena D, García C, García M, Arce R, Ramírez G, Díaz C, Isaacs M, Arévalo MDC, Aguirre MJ. Effect of the substituent of the cation of N-octylpyridinium hexafluorophosphate in the electrical and electrochemical response of carbon paste electrodes modified with these ionic liquids. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
He W, Zhang F, Wang Z, Sun W, Zhou Z, Ren Z. Facilitated Separation of CO2 by Liquid Membranes and Composite Membranes with Task-Specific Ionic Liquids. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wei He
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Fan Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Zhi Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Wei Sun
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Zhiyong Zhou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Zhongqi Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
12
|
Shaligram SV, Rewar AS, Wadgaonkar PP, Kharul UK. Incorporation of rigid polyaromatic groups in polybenzimidazole-based polymeric ionic liquids: Assertive effects on gas permeation properties. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.03.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Tomé LC, Marrucho IM. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes. Chem Soc Rev 2016; 45:2785-824. [DOI: 10.1039/c5cs00510h] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review provides a judicious assessment of the CO2 separation efficiency of membranes using ionic liquid-based materials and highlights breakthroughs and key challenges in this field.
Collapse
Affiliation(s)
- Liliana C. Tomé
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
| | - Isabel M. Marrucho
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
| |
Collapse
|