7
|
Ariati R, Sales F, Souza A, Lima RA, Ribeiro J. Polydimethylsiloxane Composites Characterization and Its Applications: A Review. Polymers (Basel) 2021; 13:polym13234258. [PMID: 34883762 PMCID: PMC8659928 DOI: 10.3390/polym13234258] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Polydimethylsiloxane (PDMS) is one of the most promising elastomers due its remarkable proprieties such as good thermal stability, biocompatibility, corrosion resistance, flexibility, low cost, ease of use, chemically inertia, hyperplastic characteristics, and gas permeability. Thus, it can be used in areas such as microfluidic systems, biomedical devices, electronic components, membranes for filtering and pervaporation, sensors, and coatings. Although pure PDMS has low mechanical properties, such as low modulus of elasticity and strength, it can be improved by mixing the PDMS with other polymers and by adding particles or reinforcements. Fiber-reinforced PDMS has proved to be a good alternative to manufacturing flexible displays, batteries, wearable devices, tactile sensors, and energy harvesting systems. PDMS and particulates are often used in the separation of liquids from wastewater by means of porosity followed by hydrophobicity. Waxes such as beeswax and paraffin have proved to be materials capable of improving properties such as the hydrophobic, corrosion-resistant, thermal, and optical properties of PDMS. Finally, when blended with polymers such as poly (vinyl chloride-co-vinyl acetate), PDMS becomes a highly efficient alternative for membrane separation applications. However, to the best of our knowledge there are few works dedicated to the review and comparison of different PDMS composites. Hence, this review will be focused on PDMS composites, their respective applications, and properties. Generally, the combination of elastomer with fibers, particles, waxes, polymers, and others it will be discussed, with the aim of producing a review that demonstrates the wide applications of this material and how tailored characteristics can be reached for custom applications.
Collapse
Affiliation(s)
- Ronaldo Ariati
- ESTiG, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal; (R.A.); (F.S.); (J.R.)
| | - Flaminio Sales
- ESTiG, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal; (R.A.); (F.S.); (J.R.)
| | - Andrews Souza
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Rui A. Lima
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Roberto Frias, 4200-465 Porto, Portugal
- Correspondence:
| | - João Ribeiro
- ESTiG, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal; (R.A.); (F.S.); (J.R.)
- CIMO, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| |
Collapse
|
12
|
Si Z, Li G, Wang Z, Cai D, Li S, Baeyens J, Qin P. A Particle-Driven, Ultrafast-Cured Strategy for Tuning the Network Cavity Size of Membranes with Outstanding Pervaporation Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31887-31895. [PMID: 32551481 DOI: 10.1021/acsami.0c05859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Poly(dimethylsiloxane) (PDMS) membranes are widely used for bioethanol separation. However, the network cavity size r3 of PDMS membranes is generally smaller than the ethanol kinetic radius (0.225 nm), which limits the transport of ethanol molecules and weakens the pervaporation performance. Herein, we proposed a particle-driven, ultrafast-cured strategy to overcome the above key issue: (1) Incorporating particles into PDMS for preventing polymer chains from packing tightly, (2) freezing particles within a PDMS layer by the ultrafast UV-cross-linking for improving its distribution and increasing the chain extension of the polymer, and (3) covalently bonding particles with PDMS to enhance their compatibility. Consequently, r3 was increased to 0.262 nm, and an extremely high loading membrane (50 wt %) with an ultrashort curing time (20 s) was prepared, which is difficult to be realized by the conventional thermally driven approach. As a result, a separation factor of 13.4 with a total flux of 2207 g m-2 h-1 for separating ethanol from a 5 wt % aqueous solution at 60 °C was obtained. This strategy shows the feasibility of recovery of different bioalcohols and the large-scale continuous membrane preparation.
Collapse
Affiliation(s)
- Zhihao Si
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guozhen Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ze Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shufeng Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jan Baeyens
- Beijing Advanced Innovation Centre of Soft Matter and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Ding M, Chen B, Ji X, Zhou J, Wang H, Tian X, Feng X, Yue H, Zhou Y, Wang H, Wu J, Yang P, Jiang Y, Mao X, Xiao G, Zhong C, Xiao W, Li B, Qin L, Cheng J, Yao M, Wang Y, Liu H, Zhang L, Yu L, Chen T, Dong X, Jia X, Zhang S, Liu Y, Chen Y, Chen K, Wu J, Zhu C, Zhuang W, Xu S, Jiao P, Zhang L, Song H, Yang S, Xiong Y, Li Y, Zhang Y, Zhuang Y, Su H, Fu W, Huang Y, Li C, Zhao ZK, Sun Y, Chen GQ, Zhao X, Huang H, Zheng Y, Yang L, Su Z, Ma G, Ying H, Chen J, Tan T, Yuan Y. Biochemical engineering in China. REV CHEM ENG 2019. [DOI: 10.1515/revce-2017-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Chinese biochemical engineering is committed to supporting the chemical and food industries, to advance science and technology frontiers, and to meet major demands of Chinese society and national economic development. This paper reviews the development of biochemical engineering, strategic deployment of these technologies by the government, industrial demand, research progress, and breakthroughs in key technologies in China. Furthermore, the outlook for future developments in biochemical engineering in China is also discussed.
Collapse
Affiliation(s)
- Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Biqiang Chen
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xiaojun Ji
- College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 211816 , China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University , Nanjing 210009 , China
| | - Jingwen Zhou
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Huiyuan Wang
- Shanghai Information Center of Life Sciences (SICLS), Shanghai Institute of Biology Sciences (SIBS), Chinese Academy of Sciences , Shanghai 200031 , China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai 200237 , China
| | - Xudong Feng
- School of Life Science, Beijing Institute of Technology , Beijing 100081 , China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yongjin Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Hailong Wang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Jinan 250100 , China
| | - Jianping Wu
- Institute of Biology Engineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027 , China
| | - Pengpeng Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Yu Jiang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Xuming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University , Hangzhou 310058 , China
| | - Gang Xiao
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Bingzhi Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Lei Qin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Jingsheng Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Hong Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Linling Yu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Xiaoyan Dong
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Xiaoqiang Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yanfeng Liu
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Jinglan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Chenjie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Pengfei Jiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Lei Zhang
- Tianjin Ltd. of BoyaLife Inc. , Tianjin 300457 , China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Sheng Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Yan Xiong
- Shanghai Information Center of Life Sciences (SICLS), Shanghai Institute of Biology Sciences (SIBS), Chinese Academy of Sciences , Shanghai 200031 , China
| | - Yongquan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University , Hangzhou 310058 , China
| | - Youming Zhang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Jinan 250100 , China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai 200237 , China
| | - Haijia Su
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Weiping Fu
- China National Center of Biotechnology Development , Beijing , China
| | - Yingming Huang
- China National Center of Biotechnology Development , Beijing , China
| | - Chun Li
- School of Life Science, Beijing Institute of Technology , Beijing 100081 , China
| | - Zongbao K. Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Yan Sun
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Guo-Qiang Chen
- Center of Synthetic and Systems Biology, School of Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Xueming Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - He Huang
- College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 211816 , China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University , Nanjing 210009 , China
| | - Yuguo Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology , Hangzhou 310014 , China
| | - Lirong Yang
- Institute of Biology Engineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027 , China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Jian Chen
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Tianwei Tan
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| |
Collapse
|