1
|
El Hafidi EM, Mortadi A, Chahid EG, Laasri S. Effect of trichloroisocyanuric acid concentration on the electrical properties of swimming pool water. Sci Rep 2025; 15:5223. [PMID: 39939398 PMCID: PMC11821816 DOI: 10.1038/s41598-024-80521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/19/2024] [Indexed: 02/14/2025] Open
Abstract
Swimming pools, a globally popular recreational activity, necessitate effective disinfection to mitigate potential health risks arising from water contamination. Trichloroisocyanuric acid (TCCA), a prominent disinfectant, is pivotal in pool water treatment. This paper investigates the impact of trichloroisocyanuric acid concentration on the electrical properties of swimming pool water. Water samples were collected from a covered pool in El Jadida, Morocco, disinfected with varying concentrations of trichloroisocyanuric acid, and analyzed using electrical impedance measurements. The pool's water treatment system, including pre-filters and pressure filters with multi-layer beds, was described. Thorough examinations of bromate, chlorate, and chlorite were conducted. The obtained water quality parameters met standard limits, indicating favorable conditions. The complex impedance and conductivity of samples with different trichloroisocyanuric acid concentrations were explored. An equivalent circuit model successfully described the relaxation behavior, emphasizing the intricate relationship between trichloroisocyanuric acid concentrations and the physicochemical properties of pool water. Changes in relaxation times and DC conductivity were observed with increasing concentrations, providing valuable insights for water treatment optimization. The nuanced understanding of relaxation dynamics and conductivity variations contributes to optimizing pool maintenance strategies, ensuring a safe and enjoyable swimming environment.
Collapse
Affiliation(s)
- El Mokhtar El Hafidi
- Laboratory of Engineering Science for energy (labSIPE) ENSA, Chouaib Doukkali University, El-Jadida, Morocco.
| | - Abdelhadi Mortadi
- Laboratory Physics of Condensed Matter (LPMC), Chouaib Doukkali University, El-Jadida, Morocco
| | - El Ghaouti Chahid
- Polydisciplinary Faculty of Sidi Bennour, Chouaib Doukkali University, El-Jadida, Morocco
| | - Said Laasri
- Laboratory of Engineering Science for energy (labSIPE) ENSA, Chouaib Doukkali University, El-Jadida, Morocco
| |
Collapse
|
2
|
Chaubal AS, Zydney AL. Single-Pass Tangential Flow Filtration (SPTFF) of Nanoparticles: Achieving Sustainable Operation with Dilute Colloidal Suspensions for Gene Therapy Applications. MEMBRANES 2023; 13:433. [PMID: 37103860 PMCID: PMC10143681 DOI: 10.3390/membranes13040433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Recent approval of several viral-vector-based therapeutics has led to renewed interest in the development of more efficient bioprocessing strategies for gene therapy products. Single-Pass Tangential Flow Filtration (SPTFF) can potentially provide inline concentration and final formulation of viral vectors with enhanced product quality due. In this study, SPTFF performance was evaluated using a suspension of 100 nm nanoparticles that mimics a typical lentivirus system. Data were obtained with flat-sheet cassettes having 300 kDa nominal molecular weight cutoff, either in full recirculation or single-pass mode. Flux-stepping experiments identified two critical fluxes, one based on boundary-layer particle accumulation (Jbl) and one based on membrane fouling (Jfoul). The critical fluxes were well-described using a modified concentration polarization model that captures the observed dependence on feed flow rate and feed concentration. Long-duration filtration experiments were conducted under stable SPTFF conditions, with the results suggesting that sustainable performance could potentially be achieved for as much as 6 weeks of continuous operation. These results provide important insights into the potential application of SPTFF for the concentration of viral vectors in the downstream processing of gene therapy agents.
Collapse
|
3
|
Maréchal M, Correc O, Demelas C, Couzinet A, Cimetière N, Vassalo L, Gérardin F, Boudenne JL. Characterization and chlorine reactivity of particulate matter released by bathers in indoor swimming pools. CHEMOSPHERE 2023; 313:137589. [PMID: 36566788 DOI: 10.1016/j.chemosphere.2022.137589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Disinfecting swimming pool water is essential for preventing waterborne diseases. An unforeseen consequence of treating water with disinfectants is the formation of disinfection by-products (DPBs) that can cause harmful effects to health through the interactions between the added disinfectant and organic matter in the water. The present work focuses on the chlorine reactivity with particles released by bathers. Such particles are collected in the filter backwash water of swimming pools and this study intends to distinguish DPBs generated from dissolved chemicals from those formed by particulate matter. Therefore, filtered and unfiltered backwash waters were collected from several swimming pools, analysed physicochemically and chemically, and then chlorinated as is (79 mgL-1) and as diluted suspensions (36.2 and 11.9 mgL-1) at varying concentrations of chlorine (1.2 mg and 24 mgCl2L-1). Utilizing a DPD colorimetric technique and GC-ECD, respectively, the kinetics of chlorine consumption and DPBs production have been investigated. Up to 25.7 μgL-1 of chloroform was produced within 96 h at 1.2 mgCl2L-1, followed by haloacetic acids (HAAs) and haloacetonitriles (HANs). Within 96 h, the concentration of trichloroacetic acid reached a maximum of 231.8 μgL-1 at a chlorine concentration of 231.8 μgL-1. The formations of 0.13 μmol THMs, 0.31 μmol HAAs, and 0.04 μmol HANs per mg of dissolved organic carbon (DOC) were finally determined by correlating the organic content of particles with the nature of the DBPs generated. Comparing the quantities of DBPs generated in filtered and unfiltered samples helps us conclude that ∼50% of DBPs formed during the chlorination of swimming pool water are derived from particles brought by bathers.
Collapse
Affiliation(s)
- M Maréchal
- Scientific and Technical Center for Buildings, CSTB, 11 Rue Henri Picherit, BP 82341, 44323, Nantes Cedex 3, France; Aix Marseille Univ, CNRS, LCE, Marseille, France.
| | - O Correc
- Scientific and Technical Center for Buildings, CSTB, 11 Rue Henri Picherit, BP 82341, 44323, Nantes Cedex 3, France.
| | - C Demelas
- Aix Marseille Univ, CNRS, LCE, Marseille, France.
| | - A Couzinet
- Scientific and Technical Center for Buildings, CSTB, 11 Rue Henri Picherit, BP 82341, 44323, Nantes Cedex 3, France.
| | - N Cimetière
- Rennes University, ENSCR, CNRS, ISCR UMR 6226, 35000, Rennes, France.
| | - L Vassalo
- Aix Marseille Univ, CNRS, LCE, Marseille, France.
| | - F Gérardin
- French National Research and Safety Institute, INRS, Rue du Morvan, CS60027, 54519, Vandoeuvre Cedex, France.
| | - J-L Boudenne
- Aix Marseille Univ, CNRS, LCE, Marseille, France.
| |
Collapse
|
4
|
Semenov AA, Sakhno TV. Disinfection of Swimming Pool Water by UV Irradiation and Ozonation. J WATER CHEM TECHNO+ 2022. [DOI: 10.3103/s1063455x21060084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Chen M, Heijman SGJ, Rietveld LC. State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application. MEMBRANES 2021; 11:888. [PMID: 34832117 PMCID: PMC8625480 DOI: 10.3390/membranes11110888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
Membrane filtration is considered to be one of the most promising methods for oily wastewater treatment. Because of their hydrophilic surface, ceramic membranes show less fouling compared with their polymeric counterparts. Membrane fouling, however, is an inevitable phenomenon in the filtration process, leading to higher energy consumption and a shorter lifetime of the membrane. It is therefore important to improve the fouling resistance of the ceramic membranes in oily wastewater treatment. In this review, we first focus on the various methods used for ceramic membrane modification, aiming for application in oily wastewater. Then, the performance of the modified ceramic membranes is discussed and compared. We found that, besides the traditional sol-gel and dip-coating methods, atomic layer deposition is promising for ceramic membrane modification in terms of the control of layer thickness, and pore size tuning. Enhanced surface hydrophilicity and surface charge are two of the most used strategies to improve the performance of ceramic membranes for oily wastewater treatment. Nano-sized metal oxides such as TiO2, ZrO2 and Fe2O3 and graphene oxide are considered to be the potential candidates for ceramic membrane modification for flux enhancement and fouling alleviation. The passive antifouling ceramic membranes, e.g., photocatalytic and electrified ceramic membranes, have shown some potential in fouling control, oil rejection and flux enhancement, but have their limitations.
Collapse
Affiliation(s)
- Mingliang Chen
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands; (S.G.J.H.); (L.C.R.)
| | | | | |
Collapse
|
6
|
Jacquet N, Wurtzer S, Darracq G, Wyart Y, Moulin L, Moulin P. Effect of concentration on virus removal for ultrafiltration membrane in drinking water production. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Chen M, Shang R, Sberna PM, Luiten-Olieman MW, Rietveld LC, Heijman SG. Highly permeable silicon carbide-alumina ultrafiltration membranes for oil-in-water filtration produced with low-pressure chemical vapor deposition. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117496] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Skibinski B, Uhlig S, Müller P, Slavik I, Uhl W. Impact of Different Combinations of Water Treatment Processes on the Concentration of Disinfection Byproducts and Their Precursors in Swimming Pool Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8115-8126. [PMID: 31180210 DOI: 10.1021/acs.est.9b00491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To mitigate microbial activity in swimming pools and to ensure hygienic safety for bathers, pool systems have a recirculating water system ensuring continuous water treatment and disinfection by chlorination. A major drawback associated with the use of chlorine as disinfectant is its potential to react with precursor substances present in pool water to form harmful disinfection byproducts (DBPs). In this study, different combinations of conventional and advanced treatment processes were applied to lower the concentration of DBPs and their precursors in pool water by using a pilot-scale swimming pool model operated under reproducible and fully controlled conditions. The quality of the pool water was determined after stationary concentrations of dissolved organic carbon (DOC) were reached. The relative removal of DOC (Δc cin-1) across the considered treatment trains ranged between 0.1 ± 2.9% and 7.70 ± 4.5%, where conventional water treatment (coagulation and sand filtration combined with granular activated carbon (GAC) filtration) was revealed to be the most effective. Microbial processes in the deeper, chlorine-free regions of the GAC filter have been found to play an important role in the degradation of organic substances. Almost all treatment combinations were capable of removing trihalomethanes to some degree and trichloramine and dichloroacetonitrile almost completely. However, the results demonstrated that effective removal of DBPs across the treatment train does not necessarily result in low DBP concentrations in the basin of a pool. This raises the importance of the DBP formation potential of the organic precursors, which has been shown to depend strongly on the treatment concept applied. Irrespective of the filtration technique employed, treatment combinations employing UV irradiation as a second treatment step revealed higher concentrations of volatile DBPs in the pool compared to those employing GAC filtration as a second treatment step. In the particular case of trichloramine, results confirm that its removal across the treatment train is not a feasible mitigation strategy because it cannot compensate for the fast formation in the basin.
Collapse
Affiliation(s)
- Bertram Skibinski
- Chair of Urban Water Systems Engineering , Technical University of Munich , 85748 Garching , Germany
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
| | - Stephan Uhlig
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
| | - Pascal Müller
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
| | - Irene Slavik
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
- Wahnbachtalsperrenverband , 53721 Siegburg , Germany
| | - Wolfgang Uhl
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
- Norwegian Institute for Water Research (NIVA) , 0349 Oslo , Norway
- Norwegian University of Science and Technology (NTNU) , Institute of Civil and Environmental Engineering , 7491 Trondheim , Norway
| |
Collapse
|
9
|
Christensen ML, Klausen MM, Christensen PV. Test of precoat filtration technology for treatment of swimming pool water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:748-758. [PMID: 29431720 DOI: 10.2166/wst.2017.593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The technical performance of a precoat filter was compared with that of a traditional sand filter. Particle concentration and size distribution were measured before and after the filtration of swimming pool water. Both the sand and precoat filters could reduce the particle concentration in the effluent. However, higher particle removal efficiency was generally observed for the precoat filter, especially for particles smaller than 10 μm in diameter. Adding flocculant improved the removal efficiency of the sand filter, resulting in removal efficiencies comparable to those of the precoat filter. Three powders, i.e., two types of perlite (Harbolite® and Aquatec perlite) and cellulose fibers (Arbocel®), were tested for the precoat filter, but no significant difference in particle removal efficiency was observed among them. The maximum efficiency was reached within 30-40 min of filtration. The energy required for the pumps increased by approximately 35% over a period of 14 days. The energy consumption could be reduced by replacing the powder on the filter cloth. The sand filter was backwashed once a week, while the powder on the precoat filter was replaced every two weeks. Under these conditions, it was possible to reduce the water used for cleaning by 88% if the precoat filter was used instead of the sand filter.
Collapse
Affiliation(s)
- Morten Lykkegaard Christensen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg Øst, Denmark E-mail:
| | | | | |
Collapse
|
10
|
Lu R, Zhang C, Piatkovsky M, Ulbricht M, Herzberg M, Nguyen TH. Improvement of virus removal using ultrafiltration membranes modified with grafted zwitterionic polymer hydrogels. WATER RESEARCH 2017; 116:86-94. [PMID: 28324709 DOI: 10.1016/j.watres.2017.03.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 05/24/2023]
Abstract
Potable water reuse has been adopted by cities suffering water scarcity in recent years. The microbial safety in water reuse, especially with respect to pathogenic viruses, is still a concern for water consumers. Membrane filtration can achieve sufficient removal of pathogenic viruses without disinfection byproducts, but the required energy is intensive. In this study, we graft-polymerized zwitterionic SPP ([3-(methacryloylamino) propyl] dimethyl (3-sulfopropyl) ammonium hydroxide) on a 150 kDa ultrafiltration polyethersulfone membrane to achieve a significantly higher virus removal. The redox-initiated graft-polymerization was performed in an aqueous solution during filtration of the monomer and initiators, allowing for functionalizing the membrane pores with hydrophilic polySPP. Bacteriophage MS2 and human adenovirus type 2 (HAdV-2) were used as surrogates for pathogenic human norovirus and human adenovirus. The grafting resulted in ∼18% loss of the membrane permeability but an increase of 4 log10 in HAdV-2 removal and 3 log10 in MS2 removal. The pristine and the grafted membranes were both conditioned with soluble microbial products (SMP) extracted from a full-scale membrane bioreactor (MBR) in order to test the virus removal after fouling the membranes. After fouling, the HAdV-2 removal by the grafted membrane was 1 log10 higher than that of the pristine membrane. For MS2, the grafted membrane after fouling with SMP achieved an additional 5 log10 removal compared to the unmodified membrane. The simple graft-polymerization functionalization of commercialized membrane achieving enhanced virus removal efficiency highlights the promise of membrane filtration for pathogen control in potable water reuse.
Collapse
Affiliation(s)
- Ruiqing Lu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Chang Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Maria Piatkovsky
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117, Essen, Germany
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel.
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
11
|
Wu B, Wang R, Fane AG. The roles of bacteriophages in membrane-based water and wastewater treatment processes: A review. WATER RESEARCH 2017; 110:120-132. [PMID: 27998784 DOI: 10.1016/j.watres.2016.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/20/2016] [Accepted: 12/04/2016] [Indexed: 05/04/2023]
Abstract
Membrane filtration processes have been widely applied in water and wastewater treatment for many decades. Concerns related to membrane treatment effectiveness, membrane lifespan, and membrane fouling control have been paid great attention. To achieve sustainable membrane operation with regards to low energy and maintenance cost, monitoring membrane performance and applying suitable membrane control strategies are required. As the most abundant species in water and wastewater, bacteriophages have shown great potential to be employed in membrane processes as (1) indicators to assess membrane performance considering their similar properties to human pathogenic waterborne viruses; (2) surrogate particles to monitor membrane integrity due to their nano-sized nature; and (3) biological agents to alleviate membrane fouling because of their antimicrobial properties. This study aims to provide a comprehensive review on the roles of bacteriophages in membrane-based water and wastewater treatment processes, with focuses on their uses for membrane performance examination, membrane integrity monitoring, and membrane biofouling control. The advantages, limitations, and influencing factors for bacteriophage-based applications are reported. Finally, the challenges and prospects of bacteriophage-based applications in membrane processes for water treatment are highlighted.
Collapse
Affiliation(s)
- Bing Wu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Anthony G Fane
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|