1
|
Figueiredo NM, Voroshylova IV, Ferreira ESC, Marques JMC, Cordeiro MNS. Magnetic Ionic Liquids: Current Achievements and Future Perspectives with a Focus on Computational Approaches. Chem Rev 2024; 124:3392-3415. [PMID: 38466339 PMCID: PMC10979404 DOI: 10.1021/acs.chemrev.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Magnetic ionic liquids (MILs) stand out as a remarkable subclass of ionic liquids (ILs), combining the desirable features of traditional ILs with the unique ability to respond to external magnetic fields. The incorporation of paramagnetic species into their structures endows them with additional attractive features, including thermochromic behavior and luminescence. These exceptional properties position MILs as highly promising materials for diverse applications, such as gas capture, DNA extractions, and sensing technologies. The present Review synthesizes key experimental findings, offering insights into the structural, thermal, magnetic, and optical properties across various MIL families. Special emphasis is placed on unraveling the influence of different paramagnetic species on MILs' behavior and functionality. Additionally, the Review highlights recent advancements in computational approaches applied to MIL research. By leveraging molecular dynamics (MD) simulations and density functional theory (DFT) calculations, these computational techniques have provided invaluable insights into the underlying mechanisms governing MILs' behavior, facilitating accurate property predictions. In conclusion, this Review provides a comprehensive overview of the current state of research on MILs, showcasing their special properties and potential applications while highlighting the indispensable role of computational methods in unraveling the complexities of these intriguing materials. The Review concludes with a forward-looking perspective on the future directions of research in the field of magnetic ionic liquids.
Collapse
Affiliation(s)
- Nádia M. Figueiredo
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Iuliia V. Voroshylova
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Elisabete S. C. Ferreira
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Jorge M. C. Marques
- CQC−IMS,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - M. Natália
D. S. Cordeiro
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Abbasi N, De Silva S, Biswas A, Anderson JL. Ultra-Low Viscosity and High Magnetic Susceptibility Magnetic Ionic Liquids Featuring Functionalized Diglycolic Acid Ester Rare-Earth and Transition Metal Chelates. ACS OMEGA 2023; 8:27751-27760. [PMID: 37546640 PMCID: PMC10399152 DOI: 10.1021/acsomega.3c03938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
Magnetic ionic liquids (MILs) comprise a subcategory of ionic liquids (ILs) and contain a paramagnetic metal center allowing them to be readily manipulated by an external magnetic field. While MILs are popularly employed as solvents in catalysis, separations, and organic synthesis, most low viscosity combinations possess a hydrophilic character that limits their use in aqueous matrices. To date, no study has reported the synthesis and characterization of hydrophobic MILs with viscosities similar to those of hydrophilic MILs and organic solvents while simultaneously exhibiting enhanced magnetic and thermal properties. In this study, diglycolic acid esters are employed as ligands to chelate with paramagnetic metals to produce cations that are paired with metal chelates composed of hexafluoroacetylacetonate ligands to form MILs incorporating multiple metal centers in the cation and anion. Viscosity values below 31.6 cP were obtained for these solvents, the lowest ever reported for hydrophobic MILs. Solubilities in nonpolar solvents such as benzene were observed to be as high as 50% (w/v) MIL-to-solvent ratio while being insoluble in water at concentrations as low as 0.01% (w/v). Effective paramagnetic moment values for these solvents ranged from 5.33 to 15.56 Bohr magnetons (μB), with mixed metal MILs containing multiple lanthanides in the anion generally offering higher magnetic susceptibilities. MILs composed of ligands containing octyl substituents were found to possess thermal stabilities up to 190 °C. The synthetic strategies explored in this study exploit the highly tunable nature of the employed cation and anion pairs to design versatile ultra-low viscosity magnetoactive solvents that possess tremendous potential and applicability in liquid-liquid separation systems, catalysis, and microfluidics where the mechanical movement of the solvent can be easily facilitated using electromagnets.
Collapse
Affiliation(s)
| | - Shashini De Silva
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Anis Biswas
- Ames
National Laboratory—USDOE, Ames, Iowa 50011, United States
| | - Jared L. Anderson
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
González-Veloso I, Figueiredo NM, Cordeiro MNDS. Unravelling the Interactions of Magnetic Ionic Liquids by Energy Decomposition Schemes: Towards a Transferable Polarizable Force Field. Molecules 2021; 26:molecules26185526. [PMID: 34576997 PMCID: PMC8466702 DOI: 10.3390/molecules26185526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
This work aims at unravelling the interactions in magnetic ionic liquids (MILs) by applying Symmetry-Adapted Perturbation Theory (SAPT) calculations, as well as based on those to set-up a polarisable force field model for these liquids. The targeted MILs comprise two different cations, namely: 1-butyl-3-methylimidazolium ([Bmim]+) and 1-ethyl-3-methylimidazolium ([Emim]+), along with several metal halides anions such as [FeCl4]−, [FeBr4]−, [ZnCl3]− and [SnCl4]2− To begin with, DFT geometry optimisations of such MILs were performed, which in turn revealed that the metallic anions prefer to stay close to the region of the carbon atom between the nitrogen atoms in the imidazolium fragment. Then, a SAPT study was carried out to find the optimal separation of the monomers and the different contributions for their interaction energy. It was found that the main contribution to the interaction energy is the electrostatic interaction component, followed by the dispersion one in most of the cases. The SAPT results were compared with those obtained by employing the local energy decomposition scheme based on the DLPNO-CCSD(T) method, the latter showing slightly lower values for the interaction energy as well as an increase of the distance between the minima centres of mass. Finally, the calculated SAPT interaction energies were found to correlate well with the melting points experimentally measured for these MILs.
Collapse
|
4
|
Malecha JJ, Biller JR, Lama B, Gin DL. System for Living ROMP of a Paramagnetic FeCl 4--Based Ionic Liquid Monomer: Direct Synthesis of Magnetically Responsive Block Copolymers. ACS Macro Lett 2020; 9:140-145. [PMID: 35638664 DOI: 10.1021/acsmacrolett.9b00902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct, living ring-opening metathesis polymerization of a highly paramagnetic, norbornene-based imidazolium FeCl4- ionic liquid monomer was achieved using the Grubbs third-generation catalyst and starting the polymerization off with an uncharged, nonparamagnetic norbornene monomer in a sequential block copolymerization. Preparing the paramagnetic norbornene imidazolium FeCl4- monomer in high purity was found to be crucial for enabling living polymerization behavior and generating paramagnetic diblock copolymers with predictable block lengths and compositions.
Collapse
Affiliation(s)
- John J Malecha
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Joshua R Biller
- TDA Research, Inc., 4663 Table Mountain Drive, Golden, Colorado 80403, United States
| | - Bimala Lama
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Douglas L Gin
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
5
|
Molecular dynamics study of racemic mixtures: Solutions of ibuprofen and β-cyclodextrin in methanol. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Benedetto A, Ballone P. Room-Temperature Ionic Liquids and Biomembranes: Setting the Stage for Applications in Pharmacology, Biomedicine, and Bionanotechnology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9579-9597. [PMID: 29510045 DOI: 10.1021/acs.langmuir.7b04361] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Empirical evidence and conceptual elaboration reveal and rationalize the remarkable affinity of organic ionic liquids for biomembranes. Cations of the so-called room-temperature ionic liquids (RTILs), in particular, are readily absorbed into the lipid fraction of biomembranes, causing a variety of observable biological effects, including generic cytotoxicity, broad antibacterial potential, and anticancer activity. Chemical physics analysis of model systems made of phospholipid bilayers, RTIL ions, and water confirm and partially explain this evidence, quantifying the mild destabilizing effect of RTILs on the structural, dynamic, and thermodynamic properties of lipids in biomembranes. Our Feature Article presents a brief introduction to these systems and to their roles in biophysics and biotechnology, summarizing recent experimental and computational results on their properties. More importantly, it highlights the many developments in pharmacology, biomedicine, and bionanotechnology expected from the current research effort on this topic. To anticipate future developments, we speculate on (i) potential applications of (magnetic) RTILs to affect and control the rheology of cells and biological tissues, of great relevance for diagnostics and (ii) the use of RTILs to improve the durability, reliability, and output of biomimetic photovoltaic devices.
Collapse
Affiliation(s)
- Antonio Benedetto
- Laboratory for Neutron Scattering , Paul Scherrer Institute , Villigen 5232 , Switzerland
- Conway Institute of Biomolecular and Biomedical Research , University College Dublin , Dublin 4 , Ireland
| | - Pietro Ballone
- Italian Institute of Technology , Via Morego 30 , 16163 Genova , Italy
| |
Collapse
|
7
|
Rynkowska E, Fatyeyeva K, Kujawski W. Application of polymer-based membranes containing ionic liquids in membrane separation processes: a critical review. REV CHEM ENG 2017. [DOI: 10.1515/revce-2016-0054] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The interest in ionic liquids, particularly in polymerizable ionic liquids, is motivated by their unique properties, such as good thermal stability, negligible vapor pressure, and wide electrochemical window. Due to these features ionic liquids were proposed to be used in the membrane separation technology. The utilization of conventional ionic liquids is, however, limited by their release from the membrane during the given separation process. Therefore, the incorporation of polymerizable ionic liquids may overcome this drawback for the industrial application. This work is a comprehensive overview of the advances of ionic liquid membranes for the separation of various compounds, i.e. gases, organic compounds, and metal ions.
Collapse
Affiliation(s)
- Edyta Rynkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń , Toruń , Poland
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS , Rouen , France
| | | | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń , 7, Gagarina Street, 87-100 Toruń , Poland
| |
Collapse
|
8
|
Clark KD, Nacham O, Purslow JA, Pierson SA, Anderson JL. Magnetic ionic liquids in analytical chemistry: A review. Anal Chim Acta 2016; 934:9-21. [DOI: 10.1016/j.aca.2016.06.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
|
9
|
Zarnegar Z, Safari J. Magnetic carbon nanotube-supported imidazolium cation-based ionic liquid as a highly stable nanocatalyst for the synthesis of 2-aminothiazoles. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zohre Zarnegar
- Laboratory of Organic Compound Research, Department of Organic Chemistry, College of Chemistry and Biochemistry; University of Kashan; PO Box 87317-51167 Kashan IR Iran
| | - Javad Safari
- Laboratory of Organic Compound Research, Department of Organic Chemistry, College of Chemistry and Biochemistry; University of Kashan; PO Box 87317-51167 Kashan IR Iran
| |
Collapse
|