1
|
Shen H, Gong Y, Chen W, Wei X, Li P, Cheng C. Anion Exchange Membrane Based on BPPO/PECH with Net Structure for Acid Recovery via Diffusion Dialysis. Int J Mol Sci 2023; 24:ijms24108596. [PMID: 37239945 DOI: 10.3390/ijms24108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
In order to improve the performance of the anion exchange membrane (AEM) used in acid recovery from industrial wastewater, this study adopted a new strategy in which brominated poly (2,6-dimethyl-1,4-phenyleneoxide) (BPPO) and polyepichlorohydrin (PECH) were used as the polymer backbone of the prepared membrane. The new anion exchange membrane with a net structure was formed by quaternizing BPPO/PECH with N,N,N,N-tetramethyl-1,6-hexanediamine (TMHD). The application performance and physicochemical property of the membrane were adjusted by changing the content of PECH. The experimental study found that the prepared anion exchange membrane had good mechanical performance, thermostability, acid resistance and an appropriate water absorption and expansion ratio. The acid dialysis coefficient (UH+) of anion exchange membranes with different contents of PECH and BPPO was 0.0173-0.0262 m/h at 25 °C. The separation factors (S) of the anion exchange membranes were 24.6 to 27.0 at 25 °C. Compared with the commercial BPPO membrane (DF-120B), the prepared membrane had higher values of UH+ and S in this paper. In conclusion, this work indicated that the prepared BPPO/PECH anion exchange membrane had the potential for acid recovery using the DD method.
Collapse
Affiliation(s)
- Haiyang Shen
- School of Materials & Chemical Engineering, Anhui Jianzhu University, Hefei 230022, China
| | - Yifei Gong
- School of Materials & Chemical Engineering, Anhui Jianzhu University, Hefei 230022, China
| | - Wei Chen
- School of Materials & Chemical Engineering, Anhui Jianzhu University, Hefei 230022, China
| | - Xianbiao Wei
- Department of Mathematics & Physics, Anhui Jianzhu University, Hefei 230022, China
| | - Ping Li
- School of Materials & Chemical Engineering, Anhui Jianzhu University, Hefei 230022, China
| | - Congliang Cheng
- School of Materials & Chemical Engineering, Anhui Jianzhu University, Hefei 230022, China
| |
Collapse
|
2
|
Lin J, Dan X, Wang J, Huang S, Fan L, Xie M, Zhao S, Lin X. In-situ cross-linked porous anion exchange membranes with high performance for efficient acid recovery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
3
|
Yadav A, Rene ER, Sharma M, Jatain I, Mandal MK, Dubey KK. Valorization of wastewater to recover value-added products: A comprehensive insight and perspective on different technologies. ENVIRONMENTAL RESEARCH 2022; 214:113957. [PMID: 35932829 DOI: 10.1016/j.envres.2022.113957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In recent years, due to rapid globalization and urbanization, the demand for fuels, energy, water and nutrients has been continuously increasing. To meet the future need of the society, wastewater is a prominent and emerging source for resource recovery. It provides an opportunity to recover valuable resources in the form of energy, fertilizers, electricity, nutrients and other products. The aim of this review is to elaborate the scientific literature on the valorization of wastewater using wide range of treatment technologies and reduce the existing knowledge gap in the field of resource recovery and water reuse. Several versatile, resilient environmental techniques/technologies such as ion exchange, bioelectrochemical, adsorption, electrodialysis, solvent extraction, etc. are employed for the extraction of value-added products from waste matrices. Since the last two decades, valuable resources such as polyhydroxyalkanoate (PHA), matrix or polymers, cellulosic fibers, syngas, biodiesel, electricity, nitrogen, phosphorus, sulfur, enzymes and a wide range of platform chemicals have been recovered from wastewater. In this review, the aspects related to the persisting global water issues, the technologies used for the recovery of different products and/or by-products, economic sustainability of the technologies and the challenges encountered during the valorization of wastewater are discussed comprehensively.
Collapse
Affiliation(s)
- Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Indu Jatain
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Mrinal Kanti Mandal
- Department of Chemical Engineering, National Institute of Technology, Durgapur, 713209, West Bengal, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
You X, Chen J, Teng L, Lin J, Lin X. Porous anion exchange membranes fabricated by phase inversion and in‐situ modification for acid recovery. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xinqiang You
- College of Chemical Engineering Fuzhou University Fuzhou People's Republic of China
- Fujian Science & Technology Innovation Laboratory for Chemical Engineering of China Quanzhou Fujian People's Republic of China
| | - Jiaqi Chen
- College of Chemical Engineering Fuzhou University Fuzhou People's Republic of China
| | - Lin Teng
- College of Chemical Engineering Fuzhou University Fuzhou People's Republic of China
- Fujian Science & Technology Innovation Laboratory for Chemical Engineering of China Quanzhou Fujian People's Republic of China
| | - Jiuyang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, School of Environment and Resources Fuzhou University Fuzhou People's Republic of China
| | - Xiaocheng Lin
- College of Chemical Engineering Fuzhou University Fuzhou People's Republic of China
- Fujian Science & Technology Innovation Laboratory for Chemical Engineering of China Quanzhou Fujian People's Republic of China
| |
Collapse
|
5
|
Zhang Y, Song G, Luo T, Yang X, Ren H, Wang X, Zhang Z. Acid-triggered polyether sulfone - Polyvinyl pyrrolidone blend anion exchange membranes for the recovery of titania waste acid via diffusion dialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Cheng C, Shen HY, Gong Y, Chen W, Li P. Auxiliary functional group diffusion dialysis membranes for acid recovery. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Congliang Cheng
- Anhui Key Laboratory of Advanced Building Materials Anhui Jianzhu University Hefei People's Republic of China
- Anhui Province Key Laboratory of Environment‐friendly Polymer Material Anhui University Hefei People's Republic of China
| | - Hai Yang Shen
- Anhui Key Laboratory of Advanced Building Materials Anhui Jianzhu University Hefei People's Republic of China
| | - Yifei Gong
- Anhui Key Laboratory of Advanced Building Materials Anhui Jianzhu University Hefei People's Republic of China
| | - Wei Chen
- Anhui Key Laboratory of Advanced Building Materials Anhui Jianzhu University Hefei People's Republic of China
| | - Ping Li
- Anhui Key Laboratory of Advanced Building Materials Anhui Jianzhu University Hefei People's Republic of China
| |
Collapse
|
7
|
Piperazine-functionalized porous anion exchange membranes for efficient acid recovery by diffusion dialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Liu B, Duan Y, Li T, Li J, Zhang H, Zhao C. Nanostructured anion exchange membranes based on poly(arylene piperidinium) with bis-cation strings for diffusion dialysis in acid recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Synthesis of Porous BPPO-Based Anion Exchange Membranes for Acid Recovery via Diffusion Dialysis. MEMBRANES 2022; 12:membranes12010095. [PMID: 35054621 PMCID: PMC8778702 DOI: 10.3390/membranes12010095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/05/2023]
Abstract
Diffusion dialysis (DD) is an anion exchange membrane-based functional separation process used for acid recovery. TMA (trimethylamine) and BPPO (brominated poly(2,6-dimethyl-1,4-phenylene oxide) were utilized in this manuscript to formulate AEMs (anion exchange membranes) for DD (diffusion dialysis) using the phase-inversion technique. FTIR (Fourier transfer infrared) analysis, proton NMR spectroscopy, morphology, IEC (ion exchange capacity), LER (linear expansion ratio), CR (fixed group concentration), WR (water uptake/adsorption), water contact angle, chemical, and thermal stability, were all used to evaluate the prepared membranes. The effect of TMA content within the membrane matrix on acid recovery was also briefly discussed. It was reported that porous AEMs have a WR of 149.6% to 233.8%, IEC (ion exchange capacity) of 0.71 to 1.43 mmol/g, CR (fixed group concentration) that ranged from 0.0046 mol/L to 0.0056 mol/L, LER of 3.88% to 9.23%, and a water contact angle of 33.10° to 78.58°. The UH (acid dialysis coefficients) for designed porous membranes were found to be 0.0043 to 0.012 m/h, with separation factors (S) ranging from 13.14 to 32.87 at the temperature of 25 °C. These observations are comparable to those found in the DF-120B commercial membrane with UH of 0.004 m/h and S of 24.3 m/h at the same temperature (25 °C). This porous membranes proposed in this paper are excellent choices for acid recovery through the diffusion dialysis process.
Collapse
|
10
|
Afsar NU, Li X, Zhu Y, Ge Z, Zhou Y, Zhao Z, Hussain A, Ge L, Fu R, Liu Z, Xu T. In‐situ interfacial polymerization endows surface enrichment of
COOH
groups on anion exchange membranes for efficient Cl
−
/
SO
4
2
−
separation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Noor Ul Afsar
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Yanran Zhu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Zijuan Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Yue Zhou
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology University of Science and Technology of China Hefei People's Republic of China
| | - Zhang Zhao
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Arif Hussain
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology University of Science and Technology of China Hefei People's Republic of China
| | - Rongqiang Fu
- Key Laboratory of Charged Polymeric Membrane Materials of Shandong Province Shandong Tianwei Membrane Technology Co., Ltd., The Hi‐tech Zone Weifang People's Republic of China
| | - Zhaoming Liu
- Key Laboratory of Charged Polymeric Membrane Materials of Shandong Province Shandong Tianwei Membrane Technology Co., Ltd., The Hi‐tech Zone Weifang People's Republic of China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| |
Collapse
|
11
|
Song W, He Y, Shehzad MA, Ge X, Ge L, Liang X, Wei C, Ge Z, Zhang K, Li G, Yu W, Wu L, Xu T. Exploring H-bonding interaction to enhance proton permeability of an acid-selective membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Merkel A, Čopák L, Dvořák L, Golubenko D, Šeda L. Recovery of Spent Sulphuric Acid by Diffusion Dialysis Using a Spiral Wound Module. Int J Mol Sci 2021; 22:ijms222111819. [PMID: 34769251 PMCID: PMC8584272 DOI: 10.3390/ijms222111819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, we assess the effects of volumetric flow and feed temperature on the performance of a spiral-wound module for the recovery of free acid using diffusion dialysis. Performance was evaluated using a set of equations based on mass balance under steady-state conditions that describe the free acid yield, rejection factors of metal ions and stream purity, along with chemical analysis of the outlet streams. The results indicated that an increase in the volumetric flow rate of water increased free acid yield from 88% to 93%, but decreased Cu2+ and Fe2+ ion rejection from 95% to 90% and 91% to 86%, respectively. Increasing feed temperature up to 40 °C resulted in an increase in acid flux of 9%, and a reduction in Cu2+ and Fe2+ ion rejection by 2–3%. Following diffusion dialysis, the only evidence of membrane degradation was a slight drop in permselectivity and an increase in diffusion acid and salt permeability. Results obtained from the laboratory tests used in a basic economic study showed that the payback time of the membrane-based regeneration unit is approximately one year.
Collapse
Affiliation(s)
- Arthur Merkel
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic;
- Correspondence: (A.M.); (L.Č.); Tel.: +420-777-539-924 (A.M.); +420-720-051-738 (L.Č.)
| | - Ladislav Čopák
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic;
- Correspondence: (A.M.); (L.Č.); Tel.: +420-777-539-924 (A.M.); +420-720-051-738 (L.Č.)
| | - Lukáš Dvořák
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic;
| | - Daniil Golubenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Avenue, 119991 Moscow, Russia;
| | - Libor Šeda
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic;
| |
Collapse
|
13
|
Influence of hydrophobic components tuning of poly (aryl ether sulfone)s ionomers based anion exchange membranes on diffusion dialysis for acid recovery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Porous Anion Exchange Membrane for Effective Acid Recovery by Diffusion Dialysis. Processes (Basel) 2021. [DOI: 10.3390/pr9061049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diffusion dialysis (DD) employing anion exchange membranes (AEMs) presents an attractive opportunity for acid recovery from acidic wastewater. However, challenges exist to make highly acid permeable AEMs due to their low acid dialysis coefficient (Uacid). Here, a series of porous and highly acid permeable AEMs fabricated based on chloromethyl polyethersulfone (CMPES) porous membrane substrate with crosslinking and quaternization treatments is reported. Such porous AEMs show high Uacid because of the large free volume as well as the significantly reduced ion transport resistance relative to the dense AEMs. Compared with the commercial dense DF-120 AEM, our optimal porous AEM show simultaneous 466.7% higher Uacid and 75.7% higher acid/salt separation factor (Sacid/salt) when applied to acid recovery at the same condition. Further, considering the simple and efficient fabrication process as well as the low cost, our membranes show great prospects for practical acid recovery from industrial acidic wastewater.
Collapse
|
15
|
Gong F, Fan Z, Xia W, Zhang M, Wang L, Wang X, Chen X. N-cyclic cationic group-functionalized cardo poly(arylene ether sulfone)s membranes with ultrahigh selectivity for diffusion dialysis in acid recovery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Lin J, Huang J, Wang J, Yu J, You X, Lin X, Van der Bruggen B, Zhao S. High-performance porous anion exchange membranes for efficient acid recovery from acidic wastewater by diffusion dialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Kosztołowicz T. Subdiffusion in a system with a partially permeable partially absorbing wall. Phys Rev E 2021; 103:022117. [PMID: 33736008 DOI: 10.1103/physreve.103.022117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/14/2021] [Indexed: 11/07/2022]
Abstract
We consider subdiffusion of a particle in a one-dimensional system with a thin partially permeable and partially absorbing wall. The system with the wall can be used to filter diffusing particles. Passing through the wall, the particle can be absorbed with a certain probability. Knowing the Green's functions we derive boundary conditions at the wall. The boundary conditions take a specific form in which fractional time derivatives are involved. The temporal evolution of the probability that a diffusing particle has not been absorbed is also considered.
Collapse
Affiliation(s)
- Tadeusz Kosztołowicz
- Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| |
Collapse
|
18
|
Zhang X, Zhang F, Liu M, Wang Y, Xu Z, Li N. Quaternized poly(2,6-dimethyl-1,4-phenylene oxide)s with zwitterion groups as diffusion dialysis membranes for acid recovery. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Preparation of Polyvinyl Alcohol (PVA)-Based Composite Membranes Using Carboxyl-Type Boronic Acid Copolymers for Alkaline Diffusion Dialysis. Polymers (Basel) 2020; 12:polym12102360. [PMID: 33066612 PMCID: PMC7602386 DOI: 10.3390/polym12102360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Carboxyl-type boronic acid copolymers (CBACs) were synthesized by a radical polymerization method and used for the preparation of polyvinyl alcohol (PVA)-based composite membranes via a solution mixture method. The as-prepared composite membranes exhibited a water uptake (WR) of 122.6–150.0%, an ion exchange capacity (IEC) of 0.0147–0.0518 mmol g−1, and excellent mechanical (elongation at break (Eb) of 103.8–148.4%, tensile strength (TS) of 38.7–58.6 MPa) and thermal stability. The alkali resistances of the as-prepared membranes were tested by immersing the samples into 2 mol L−1 NaOH solutions at 25 °C for 60 h, and the results were encouraging: the mass loss and swelling degree of the as-prepared membranes were in the ranges of 1.9–5.9% and 222.6–241.9%, respectively. The separation performances of the as-prepared membranes were evaluated by the diffusion dialysis (DD) process with an NaOH/Na2WO4 mixture at room temperature. The results demonstrated that the dialysis coefficients of hydroxide (UOH) were in the range of 0.0147–0.0347 m h−1, and the separation factors (S) were in the range of 29.5–62.6. The introduced carboxyl groups from CBACs and the –OH groups from PVA were both deemed to play significant roles in the promotion of ion transport: the –COO− groups formed negatively charged transport channels for Na+ by electrostatic attraction, and the –OH groups promoted the transport of OH− via hydrogen bonding.
Collapse
|
20
|
Yadav V, Raj SK, Rathod NH, Kulshrestha V. Polysulfone/graphene quantum dots composite anion exchange membrane for acid recovery by diffusion dialysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Zhang C, Zhang W, Wang Y. Diffusion Dialysis for Acid Recovery from Acidic Waste Solutions: Anion Exchange Membranes and Technology Integration. MEMBRANES 2020; 10:E169. [PMID: 32751246 PMCID: PMC7463704 DOI: 10.3390/membranes10080169] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Inorganic acids are commonly used in mining, metallurgical, metal-processing, and nuclear-fuel-reprocessing industries in various processes, such as leaching, etching, electroplating, and metal-refining. Large amounts of spent acidic liquids containing toxic metal ion complexes are produced during these operations, which pose a serious hazard to the living and non-living environment. Developing economic and eco-friendly regeneration approaches to recover acid and valuable metals from these industrial effluents has focused the interest of the research community. Diffusion dialysis (DD) using anion exchange membranes (AEMs) driven by an activity gradient is considered an effective technology with a low energy consumption and little environmental contamination. In addition, the properties of AEMs have an important effect on the DD process. Hence, this paper gives a critical review of the properties of AEMs, including their acid permeability, membrane stability, and acid selectivity during the DD process for acid recovery. Furthermore, the DD processes using AEMs integrated with various technologies, such as pressure, an electric field, or continuous operation are discussed to enhance its potential for industrial applications. Finally, some directions are provided for the further development of AEMs in DD for acid recovery from acidic waste solutions.
Collapse
Affiliation(s)
| | - Wen Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (C.Z.); (Y.W.)
| | | |
Collapse
|
22
|
|
23
|
Sun M, Li M, Zhang X, Wu C, Wu Y. Graphene oxide modified porous P84 co-polyimide membranes for boron recovery by bipolar membrane electrodialysis process. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115963] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Janiszewska M, Arguillarena A, Wajs M, Staszak K, Regel-Rosocka M. Application of diffusion dialysis for reduction of acidity of real pregnant leach solutions containing Ni and Co ions. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1634102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Małgorzata Janiszewska
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Andrea Arguillarena
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Santander, Spain
| | - Magdalena Wajs
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Katarzyna Staszak
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Magdalena Regel-Rosocka
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
25
|
Cheng C, Li P, He Y, Hu X, Emmanuel K. Branched Polyvinyl Alcohol Hybrid Membrane for Acid Recovery via Diffusion Dialysis. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Congliang Cheng
- Anhui Jianzhu UniversitySchool of Material and Chemical Engineering 856 Jinzhai Road 230022 Hefei China
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials 111 Jiulong Road 230601 Hefei China
| | - Ping Li
- Anhui Jianzhu UniversitySchool of Material and Chemical Engineering 856 Jinzhai Road 230022 Hefei China
| | - Yubin He
- University of Science and Technology of ChinaCAS Key Laboratory of Soft Matter Chemistry, Laboratory of Functional Membranes, School of Chemistry and Material Science 96 Jinzhai Road 230026 Hefei China
| | - Xianhai Hu
- Anhui Jianzhu UniversitySchool of Material and Chemical Engineering 856 Jinzhai Road 230022 Hefei China
| | - Kamana Emmanuel
- University of Science and Technology of ChinaCAS Key Laboratory of Soft Matter Chemistry, Laboratory of Functional Membranes, School of Chemistry and Material Science 96 Jinzhai Road 230026 Hefei China
| |
Collapse
|
26
|
Feng J, Chen J, Wei B, Liao S, Yu Y, Li X. Series-connected hexacations cross-linked anion exchange membranes for diffusion dialysis in acid recovery. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Li FJ, Jia YX, Bai TT, Wang M. Preparation of proton permselective composite membrane and its application in waste acid reclamation by ion substitution electrodialysis. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Zhou J, Zuo P, Liu Y, Yang Z, Xu T. Ion exchange membranes from poly(2,6-dimethyl-1,4-phenylene oxide) and related applications. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9296-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Fan T, Li Z, Cheng B, Li J. Preparation, characterization of PPS micro-porous membranes and their excellent performance in vacuum membrane distillation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Afsar NU, Erigene B, Irfan M, Wu B, Xu T, Ji W, Emmanuel K, Ge L, Xu T. High performance anion exchange membrane with proton transport pathways for diffusion dialysis. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.10.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Effective recovery of acids from egg waste incorporated PSf membranes: A step towards sustainable development. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Gao Q, Pan X, Buregeya PI, Lu Y, Zhang X, Yan X, Hu Z, Chen S. Stable anion exchange membranes derived from fluorinated poly(aryl ethers) with quaternized fluorene units for fuel cell applications. J Appl Polym Sci 2018. [DOI: 10.1002/app.46301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Qi Gao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering; Nanjing University of Science and Technology, 200 Xiaolingwei; Nanjing Jiangsu 210094 China
| | - Xueting Pan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering; Nanjing University of Science and Technology, 200 Xiaolingwei; Nanjing Jiangsu 210094 China
| | - Providence Ingabire Buregeya
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering; Nanjing University of Science and Technology, 200 Xiaolingwei; Nanjing Jiangsu 210094 China
| | - Yao Lu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering; Nanjing University of Science and Technology, 200 Xiaolingwei; Nanjing Jiangsu 210094 China
| | - Xulve Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering; Nanjing University of Science and Technology, 200 Xiaolingwei; Nanjing Jiangsu 210094 China
| | - Xiaobo Yan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering; Nanjing University of Science and Technology, 200 Xiaolingwei; Nanjing Jiangsu 210094 China
| | - Zhaoxia Hu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering; Nanjing University of Science and Technology, 200 Xiaolingwei; Nanjing Jiangsu 210094 China
| | - Shouwen Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering; Nanjing University of Science and Technology, 200 Xiaolingwei; Nanjing Jiangsu 210094 China
| |
Collapse
|
33
|
Bakangura E, Cheng C, Wu L, Ge X, Ran J, Khan MI, Kamana E, Afsar N, Irfan M, Shehzad A, Xu T. Hierarchically structured porous anion exchange membranes containing zwetterionic pores for ion separation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Ge L, Mondal AN, Liu X, Wu B, Yu D, Li Q, Miao J, Ge Q, Xu T. Advanced charged porous membranes with ultrahigh selectivity and permeability for acid recovery. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
|
36
|
Lin X, Kim S, Zhu DM, Shamsaei E, Xu T, Fang X, Wang H. Preparation of porous diffusion dialysis membranes by functionalization of polysulfone for acid recovery. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.11.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Xu C, Xue S, Wang P, Wu C, Wu Y. Diffusion dialysis for NaCl and NaAc recovery using polyelectrolyte complexes/PVA membranes. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Mondal AN, He Y, Ge L, Wu L, Emmanuel K, Hossain MM, Xu T. Preparation and characterization of click-driven N-vinylcarbazole-based anion exchange membranes with improved water uptake for fuel cells. RSC Adv 2017. [DOI: 10.1039/c7ra03857g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Novel click mediated AEM with improved water uptake.
Collapse
Affiliation(s)
- Abhishek N. Mondal
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- School of Chemistry and Material Science
- University of Science and Technology of China
- Hefei 230026
| | - Yubin He
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- School of Chemistry and Material Science
- University of Science and Technology of China
- Hefei 230026
| | - Liang Ge
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- School of Chemistry and Material Science
- University of Science and Technology of China
- Hefei 230026
| | - Liang Wu
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- School of Chemistry and Material Science
- University of Science and Technology of China
- Hefei 230026
| | - Kamana Emmanuel
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- School of Chemistry and Material Science
- University of Science and Technology of China
- Hefei 230026
| | - Md. Masem Hossain
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- School of Chemistry and Material Science
- University of Science and Technology of China
- Hefei 230026
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- School of Chemistry and Material Science
- University of Science and Technology of China
- Hefei 230026
| |
Collapse
|
39
|
Bakangura E, Cheng C, Wu L, He Y, Ge X, Ran J, Emmanuel K, Xu T. Highly charged hierarchically structured porous anion exchange membranes with excellent performance. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.05.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Asymmetrically porous anion exchange membranes with an ultrathin selective layer for rapid acid recovery. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|