1
|
Jin K, Yue B, Yan L, Qiao R, Zhao H, Zhang J. Synthesis and Characterization of Poly(5'-hexyloxy-1',4-biphenyl)-b-poly(2',4'-bispropoxysulfonate-1',4-biphenyl) with High Ion Exchange Capacity for Proton Exchange Membrane Fuel Cell Applications. Chem Asian J 2022; 17:e202200109. [PMID: 35313090 DOI: 10.1002/asia.202200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Indexed: 11/12/2022]
Abstract
Proton exchange membrane (PEM) is pivotal for proton exchange membrane fuel cells (PEMFCs). In the present work, a block copolymer with hydrophilic alkyl sulfonated side groups and hydrophobic flexible alkyl ether side groups, poly(5'-hexyloxy-1',4-biphenyl)-b-poly(2',4'-bispropoxysulfonate-1',4-biphenyl) (HBP-b-xBPSBP), is designed and synthesized by copolymerization of the hydrophilic and hydrophobic oligomers. The oligomers are synthesized via a Pd-catalyzed Suzuki cross-coupling of 1,3-dibromo-5-hexyloxybenzene, and 3,3'-[(4,6-dibromo-1,3-phenylene)bis(oxy)]bis(propane-1-sulfonate) or 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene. The good solubility and film-forming characteristics are achieved via the introduction of flexible hexyloxy side groups, and high ion exchange capacity (IEC) is achieved via the introduction of high density of alkyl sulfonated side groups. The HBP-b-0.5BPSBP has the highest IEC of 3.17 mmol/g, the highest proton conductivity of 43.5 mS/cm at 95 °C and 90% relative humidity (RH) and low methanol permeability of 6.45×10-7 cm2 /s. Meanwhile, crosslinked HBP-b-xBPSBP exhibits promising water uptake, swelling ratio and low methanol permeability. These characteristics are attributed to the crosslinked structure and the hydrophilic/hydrophobic nanophase separation morphology promoted by the poly(m-phenylene) main chains, flexible alkyl ether groups, and alkyl sulfonated side groups.
Collapse
Affiliation(s)
- Kunyu Jin
- Department of Chemistry, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Baohua Yue
- Department of Chemistry, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China.,Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, 381 Wushan Road, 510640, Guangzhou, P. R. China
| | - Liuming Yan
- Department of Chemistry, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Risa Qiao
- Department of Chemistry, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Hongbin Zhao
- Department of Chemistry, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China.,Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Jiujun Zhang
- Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| |
Collapse
|
2
|
Xu J, Zhang Z, Yang K, He W, Yang X, Du X, Meng L, Zhao P, Wang Z. Construction of new transport channels by blending POM-based inorganic-organic complex into sulfonated poly(ether ketone sulfone) for proton exchange membrane fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Bai Y, Yuan Y, Miao L, Lü C. Functionalized rGO as covalent crosslinkers for constructing chemically stable polysulfone-based anion exchange membranes with enhanced ion conductivity. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Lee KH, Chu JY, Kim AR, Yoo DJ. Enhanced Performance of a Sulfonated Poly(arylene ether ketone) Block Copolymer Bearing Pendant Sulfonic Acid Groups for Polymer Electrolyte Membrane Fuel Cells Operating at 80% Relative Humidity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20835-20844. [PMID: 29808664 DOI: 10.1021/acsami.8b03790] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The series of sulfonated poly(arylene ether ketone) (SPAEK) block copolymers with controlled F-oligomer length bearing pendant diphenyl unit were synthesized via a polycondensation reaction. Sulfonation was verified by 1H NMR analysis to introduce sulfonic acid group selectively and intensively on the pendant diphenyl unit of polymer backbones. The SPAEK membranes fabricated by the solution casting approach were very transparent and flexible with the thickness of ∼50 μm. These membranes with different F-oligomer lengths were investigated to the physiochemical properties such as water absorption, dimensional stability, ion exchange capacity, and proton conductivity. As a result, the SPAEK membranes (X4.8Y8.8, X7.5Y8.8, and X9.1Y8.8) in accordance to increasing the length of hydrophilic oligomer showed excellent proton conductivity in range of 131-154 mS cm-1 compared to Nafion-115 (131 mS cm-1) at 90 °C under 100% relative humidity (RH). Among the SPAEK membranes, proton conductivity of SPAEK X9.1Y8.8 (140.7 mS cm-1) is higher than that of Nafion-115 (102 mS cm-1) at 90 °C under 80% RH. The atomic force microscopy image demonstrated that number of ion transport channels is increased with increase in the length of hydrophilic oligomer in the main chains, and the morphology is proved to be related to the proton conductivity. The synthesized SPAEK membrane exhibited a maximum power density of 324 mW cm-2, which is higher than that of Nafion-115 (291 mW cm-2) at 60 °C under 100% RH.
Collapse
Affiliation(s)
- Kyu Ha Lee
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, and Education Center for Whole Life Cycle R&D of Fuel Cell Systems , Chonbuk National University , Jeonju 54896 , Republic of Korea
| | - Ji Young Chu
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, and Education Center for Whole Life Cycle R&D of Fuel Cell Systems , Chonbuk National University , Jeonju 54896 , Republic of Korea
| | | | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, and Education Center for Whole Life Cycle R&D of Fuel Cell Systems , Chonbuk National University , Jeonju 54896 , Republic of Korea
| |
Collapse
|
5
|
Hu B, Miao L, Zhao Y, Lü C. Azide-assisted crosslinked quaternized polysulfone with reduced graphene oxide for highly stable anion exchange membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.02.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Hu B, Miao L, Bai Y, Lü C. Facile construction of crosslinked anion exchange membranes based on fluorenyl-containing polysulfone via click chemistry. Polym Chem 2017. [DOI: 10.1039/c7py00789b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crosslinked fluorenyl-containing polysulfone based anion exchange membranes have been successfully synthesized via click chemistry with improved properties by controlling the crosslinking degree and micro-phase structure.
Collapse
Affiliation(s)
- Bo Hu
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Luyang Miao
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Yang Bai
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Changli Lü
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
7
|
Huang Y, Liu J, Zheng P, Feng M, Chen J, Liu X. Phthalonitrile end-capped sulfonated polyarylene ether nitriles for low-swelling proton exchange membranes. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1150-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|