1
|
Maiti TK, Singh J, Majhi J, Ahuja A, Maiti S, Dixit P, Bhushan S, Bandyopadhyay A, Chattopadhyay S. Advances in polybenzimidazole based membranes for fuel cell applications that overcome Nafion membranes constraints. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Maiti TK, Singh J, Maiti SK, Majhi J, Ahuja A, Singh M, Bandyopadhyay A, Manik G, Chattopadhyay S. Molecular dynamics simulations and experimental studies of the perfluorosulfonic acid-based composite membranes containing sulfonated graphene oxide for fuel cell applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Qu E, Jiang J, Xiao M, Han D, Huang S, Huang Z, Wang S, Meng Y. Polybenzimidazole Confined in Semi-Interpenetrating Networks of Crosslinked Poly (Arylene Ether Ketone) for High Temperature Proton Exchange Membrane. NANOMATERIALS 2022; 12:nano12050773. [PMID: 35269265 PMCID: PMC8912004 DOI: 10.3390/nano12050773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022]
Abstract
As a traditional high-temperature proton exchange membrane (HT-PEM), phosphoric acid (PA)-doped polybenzimidazole (PBI) is often subject to severe mechanical strength deterioration owing to the “plasticizing effect” of a large amount of PA. In order to address this issue, we fabricated the HT-PEMs with a crosslinked network of poly (arylene ether ketone) to confine polybenzimidazole in semi-interpenetration network using self-synthesized amino-terminated PBI (PBI-4NH2) as a crosslinker. Compared with the pristine linear poly [2,2′-(p-oxdiphenylene)-5,5′-benzimidazole] (OPBI) membrane, the designed HT-PEMs (semi-IPN/xPBI), in the semi-IPN means that the membranes with a semi-interpenetration structure and x represent the combined weight percentage of PBI-4NH2 and OPBI. In addition, they also demonstrate an enhanced anti-oxidative stability and superior mechanical properties without the sacrifice of conductivity. The semi-IPN/70PBI exhibits a higher proton conductivity than OPBI at temperatures ranging from 80 to 180 °C. The HT-PEMFC with semi-IPN/70PBI exhibits excellent H2/O2 single cell performance with a power density of 660 mW cm−2 at 160 °C with flow rates of 250 and 500 mL min−1 for dry H2 and O2 at a backpressure of 0.03 MPa, which is 18% higher than that of OPBI (561 mW cm−2) under the same test conditions. The results indicate that the introduction of PBI containing crosslinked networks is a promising approach to improve the comprehensive performance of HT-PEMs.
Collapse
Affiliation(s)
- Erli Qu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
| | - Junqiao Jiang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
| | - Min Xiao
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
| | - Dongmei Han
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Sheng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
| | - Zhiheng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
- Correspondence: (S.W.); (Y.M.)
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (E.Q.); (J.J.); (M.X.); (D.H.); (S.H.); (Z.H.)
- Correspondence: (S.W.); (Y.M.)
| |
Collapse
|
4
|
Wang Y, Sun P, Li Z, Guo H, Pei H, Yin X. High performance polymer electrolyte membrane with efficient proton pathway over a wide humidity range and effective cross-linking network. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Preparation and molecular simulation of grafted polybenzimidazoles containing benzimidazole type side pendant as high-temperature proton exchange membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118858] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Enhancing medium/high temperature proton conductivity of poly(benzimidazole)-based proton exchange membrane via blending with poly(vinyl imidazole-co-vinyl phosphonic acid) copolymer: Proton conductivity-copolymer microstructure relationship. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
|
8
|
Hu M, Li T, Neelakandan S, Wang L, Chen Y. Cross-linked polybenzimidazoles containing hyperbranched cross-linkers and quaternary ammoniums as high-temperature proton exchange membranes: Enhanced stability and conductivity. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117435] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Preparation and investigation of block polybenzimidazole membranes with high battery performance and low phosphoric acid doping for use in high-temperature fuel cells. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.083] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Lee KH, Chu JY, Kim AR, Yoo DJ. Enhanced Performance of a Sulfonated Poly(arylene ether ketone) Block Copolymer Bearing Pendant Sulfonic Acid Groups for Polymer Electrolyte Membrane Fuel Cells Operating at 80% Relative Humidity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20835-20844. [PMID: 29808664 DOI: 10.1021/acsami.8b03790] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The series of sulfonated poly(arylene ether ketone) (SPAEK) block copolymers with controlled F-oligomer length bearing pendant diphenyl unit were synthesized via a polycondensation reaction. Sulfonation was verified by 1H NMR analysis to introduce sulfonic acid group selectively and intensively on the pendant diphenyl unit of polymer backbones. The SPAEK membranes fabricated by the solution casting approach were very transparent and flexible with the thickness of ∼50 μm. These membranes with different F-oligomer lengths were investigated to the physiochemical properties such as water absorption, dimensional stability, ion exchange capacity, and proton conductivity. As a result, the SPAEK membranes (X4.8Y8.8, X7.5Y8.8, and X9.1Y8.8) in accordance to increasing the length of hydrophilic oligomer showed excellent proton conductivity in range of 131-154 mS cm-1 compared to Nafion-115 (131 mS cm-1) at 90 °C under 100% relative humidity (RH). Among the SPAEK membranes, proton conductivity of SPAEK X9.1Y8.8 (140.7 mS cm-1) is higher than that of Nafion-115 (102 mS cm-1) at 90 °C under 80% RH. The atomic force microscopy image demonstrated that number of ion transport channels is increased with increase in the length of hydrophilic oligomer in the main chains, and the morphology is proved to be related to the proton conductivity. The synthesized SPAEK membrane exhibited a maximum power density of 324 mW cm-2, which is higher than that of Nafion-115 (291 mW cm-2) at 60 °C under 100% RH.
Collapse
Affiliation(s)
- Kyu Ha Lee
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, and Education Center for Whole Life Cycle R&D of Fuel Cell Systems , Chonbuk National University , Jeonju 54896 , Republic of Korea
| | - Ji Young Chu
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, and Education Center for Whole Life Cycle R&D of Fuel Cell Systems , Chonbuk National University , Jeonju 54896 , Republic of Korea
| | | | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, and Education Center for Whole Life Cycle R&D of Fuel Cell Systems , Chonbuk National University , Jeonju 54896 , Republic of Korea
| |
Collapse
|