1
|
Song J, Zhao W, Zhou L, Meng H, Wang H, Guan P, Li M, Zou Y, Feng W, Zhang M, Zhu L, He P, Liu F, Zhang Y. Rational Materials and Structure Design for Improving the Performance and Durability of High Temperature Proton Exchange Membranes (HT-PEMs). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303969. [PMID: 37653601 PMCID: PMC10602569 DOI: 10.1002/advs.202303969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Indexed: 09/02/2023]
Abstract
Hydrogen energy as the next-generation clean energy carrier has attracted the attention of both academic and industrial fields. A key limit in the current stage is the operation temperature of hydrogen fuel cells, which lies in the slow development of high-temperature and high-efficiency proton exchange membranes. Currently, much research effort has been devoted to this field, and very innovative material systems have been developed. The authors think it is the right time to make a short summary of the high-temperature proton exchange membranes (HT-PEMs), the fundamentals, and developments, which can help the researchers to clearly and efficiently gain the key information. In this paper, the development of key materials and optimization strategies, the degradation mechanism and possible solutions, and the most common morphology characterization techniques as well as correlations between morphology and overall properties have been systematically summarized.
Collapse
Affiliation(s)
- Jingnan Song
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Wutong Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Libo Zhou
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Hongjie Meng
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Haibo Wang
- Shanghai Maxim Fuel Cell Technology CompanyShanghai201401P. R. China
| | - Panpan Guan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Min Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials CompanyZiboShandong256401P. R. China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials CompanyZiboShandong256401P. R. China
| | - Ming Zhang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Ping He
- Shanghai Maxim Fuel Cell Technology CompanyShanghai201401P. R. China
| | - Feng Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yongming Zhang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| |
Collapse
|
2
|
Chibac-Scutaru AL, Coseri S. Advances in the use of cellulose-based proton exchange membranes in fuel cell technology: A review. Int J Biol Macromol 2023; 247:125810. [PMID: 37453630 DOI: 10.1016/j.ijbiomac.2023.125810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/11/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Fuel cells are electrochemical, ecologically friendly appliances that transform chemical energy into electricity in a clean, simple, and effective manner. With the advancement of technology in the field of computer science, electronic downsizing, and the ongoing need for mobility, the demand for portable energy sources such as fuel cells has considerably increased. The proton exchange membrane, which is designed to be a good conductor for protons while isolating electrons to move from the anode to the cathode, imprinting them an external circuit, and thus creating electricity, is at the heart of such an energy source. Perfluorosulfonic acid-based (NAFION) membranes, first introduced over 50 years ago, are still the state of the art in the field of fuel cell proton exchange membranes today. However, because of the numerous drawbacks connected with the usage of NAFION membranes, the scientific community has shifted its focus to producing new generation membranes based on natural materials, such as cellulose. Therefore, we believe that a review of the most recent studies on the use of cellulose as a material for proton exchange membranes in fuel cells may be very much appreciated by the scientific community.
Collapse
Affiliation(s)
- Andreea Laura Chibac-Scutaru
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487, Iasi, Romania.
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
3
|
Senthil T, Prabukanthan P, Paradesi D, Dinakaran K.
TiO
2
nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications. J Appl Polym Sci 2023. [DOI: 10.1002/app.53737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
| | | | - Deivanayagam Paradesi
- Department of Chemistry SRM Institute of Science and Technology Kattankulathur Tamilnadu India
| | | |
Collapse
|
4
|
Jin Y, Zhang X, Feng T, Li M, Xiao H, Zhou S, Zhao Y, Zhong J, Yang D. Construction of polysulfone anion exchange hybrid membranes by incorporating carbon quantum dots and facilitated transport mechanisms. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Zhang Z, Ren J, Xu J, Meng L, Zhao P, Wang H, Wang Z. Enhanced proton conductivity of sulfonated poly(arylene ether ketone sulfone) polymers by incorporating phosphotungstic acid-ionic-liquid-functionalized metal-organic framework. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Chu X, Liu J, Miao S, Liu L, Huang Y, Tang E, Liu S, Xing X, Li N. Crucial role of side-chain functionality in anion exchange membranes: Properties and alkaline fuel cell performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119172] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Synthesis and characterization of piperazine containing polyaspartimides blended polysulfone membranes for fuel cell applications. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04924-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Bisht S, Balaguru S, Ramachandran SK, Gangasalam A, Kweon J. Proton exchange composite membranes comprising
SiO
2
, sulfonated
SiO
2
, and metal–organic frameworks loaded in
SPEEK
polymer for fuel cell applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.50530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sanjay Bisht
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli Tamil Nadu India
| | - Sasikumar Balaguru
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli Tamil Nadu India
| | - Sathish Kumar Ramachandran
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli Tamil Nadu India
| | - Arthanareeswaran Gangasalam
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli Tamil Nadu India
| | - Jihyang Kweon
- Water Treatment and Membrane Laboratory, Department of Environmental Engineering Konkuk University Seoul Republic of Korea
| |
Collapse
|
9
|
Park JE, Kim J, Han J, Kim K, Park S, Kim S, Park HS, Cho YH, Lee JC, Sung YE. High-performance proton-exchange membrane water electrolysis using a sulfonated poly(arylene ether sulfone) membrane and ionomer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118871] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Peschel C, Dreßler C, Sebastiani D. ab-Initio Study of Hydrogen Bond Networks in 1,2,3-Triazole Phases. Molecules 2020; 25:E5722. [PMID: 33287426 PMCID: PMC7730418 DOI: 10.3390/molecules25235722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
The research in storage and conversion of energy is an everlasting process. The use of fuel cells is very tempting but up to now there are still several conceptual challenges to overcome. Especially, the requirement of liquid water causes difficulties due to the temperature limit. Therefore, imidazoles and triazoles are increasingly investigated in a manifold of experimental and theoretical publications as they are both very promising in overcoming this problem. Recently, triazoles were found to be superior to imidazoles in proton conduction. An ab-initio molecular dynamics simulation of pure triazole phases for investigating the behavior of both tautomer species of the triazole molecule has never been done. In this work, we investigate the structural and dynamical properties of two different solid phases and the liquid phase at two different temperatures. We are able to show how the distinct tautomers contribute to the mechanism of proton conduction, to compute dynamical properties of the four systems and to suggest a mechanism of reorientation in solid phase.
Collapse
Affiliation(s)
| | | | - Daniel Sebastiani
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany; (C.P.); (C.D.)
| |
Collapse
|
11
|
Sun S, Ling L, Xiong Y, Zhang Y, Li Z. Trifluoromethanesulfonimide-based hygroscopic semi-interpenetrating polymer network for enhanced proton conductivity of nafion-based proton exchange membranes at low humidity. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Kumar AG, Saha S, Tiwari BR, Ghangrekar MM, Das A, Mukherjee R, Banerjee S. Sulfonated co‐poly(ether imide)s with alkyne groups: Fabrication of crosslinked membranes and studies on PEM properties including MFC performance. POLYM ENG SCI 2020; 60:2097-2110. [DOI: 10.1002/pen.25454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/31/2020] [Indexed: 02/05/2023]
Abstract
AbstractA new diamine monomer having alkyne side‐groups (DADAF) has been successfully synthesized, and it was used to prepare a series of sulfonated co‐polyimides (DFN‐XX) when reacted with 1,4,5,8‐naphthalenetetracarboxylic dianhydride along with different mole% of 4,4′‐diaminostilbene‐2,2′‐disulfonic acid. The membrane was made from the copolymers by solution casting route, and one of the copolymers DFN‐70 was used to prepare crosslinked membranes by adding a different amount of 1,6‐hexanediazide during solution casting step. The morphological transformation from non‐crosslinked S‐coPI to crosslinked S‐coPI was observed by employing transmission electron microscopy, atomic force microscopy, and small‐angle X‐ray scattering analyses. Compared to the non‐crosslinked DFN‐XX membranes, crosslinked DFN‐70 copolymer membranes showed low water uptake and improved mechanical and peroxide radical stability. Also, crosslinked DFN‐70 copolymer membranes showed significantly higher proton conductivities (0.004‐0.06 S cm−1) compared to those of DFN‐70 (0.003‐0.05 S cm−1) particularly, at 80°C when the relative humidity increased from 40% to 98%. Furthermore, crosslinked DFN‐70 copolymer membranes exhibited significantly enhanced performance in a microbial fuel cell (MFC) as compared to those of non‐crosslinked DFN‐70 membrane.
Collapse
Affiliation(s)
| | - Sayantani Saha
- Materials Science Centre Indian Institute of Technology Kharagpur Kharagpur India
| | - Bikash Ranjan Tiwari
- Department of Civil Engineering Indian Institute of Technology Kharagpur Kharagpur India
| | - Makarand M. Ghangrekar
- Department of Civil Engineering Indian Institute of Technology Kharagpur Kharagpur India
| | - Anuja Das
- Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur India
| | - Rabibrata Mukherjee
- Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur India
| | - Susanta Banerjee
- Materials Science Centre Indian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
13
|
Ghorai A, Roy S, Das S, Komber H, Ghangrekar MM, Voit B, Banerjee S. Chemically Stable Sulfonated Polytriazoles Containing Trifluoromethyl and Phosphine Oxide Moieties for Proton Exchange Membranes. ACS APPLIED POLYMER MATERIALS 2020; 2:2967-2979. [DOI: 10.1021/acsapm.0c00443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | | | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | | |
Collapse
|
14
|
Preparation and Characterization of Nitrogen-Riched Polymer Based Materials and the Role of Cu–N Active Site in Promoting the ORR Activity of the Catalyst. CATALYSIS SURVEYS FROM ASIA 2020. [DOI: 10.1007/s10563-020-09299-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Jang J, Kim DH, Ahn MK, Min CM, Lee SB, Byun J, Pak C, Lee JS. Phosphoric acid doped triazole-containing cross-linked polymer electrolytes with enhanced stability for high-temperature proton exchange membrane fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117508] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Zhou SF, Hao BB, Lin T, Zhang CX, Wang QL. A dual-functional MOF for high proton conduction and sensitive detection of ascorbic acid. Dalton Trans 2020; 49:14490-14496. [DOI: 10.1039/d0dt02834g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new Eu-MOF detects AA with turn off fluorescence and the proton conductivity of the Im@Eu-MOF is ten times higher than that of the En-MOF.
Collapse
Affiliation(s)
- Shu-Fang Zhou
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Biao-Biao Hao
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Tian Lin
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Chen-Xi Zhang
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nan kai University
- Tianjin 300071
- P. R. China
- College of Chemistry
| |
Collapse
|
17
|
Rajabi Z, Javanbakht M, Hooshyari K, Badiei A, Adibi M. High temperature composite membranes based on polybenzimidazole and dendrimer amine functionalized SBA-15 mesoporous silica for fuel cells. NEW J CHEM 2020; 44:5001-5018. [DOI: 10.1039/c9nj05369g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work SBA-15, a melamine-based functionalized SBA-15 mesoporous silica with a dicationic ionic liquid was used in order to improve the physicochemical properties of phosphoric acid doped polybenzimidazole membranes for application in HT-PEMFCs.
Collapse
Affiliation(s)
- Zahra Rajabi
- Department of Chemistry
- Amirkabir University of Technology
- Tehran
- Iran
- Solar Cell and Fuel Cell Lab
| | - Mehran Javanbakht
- Department of Chemistry
- Amirkabir University of Technology
- Tehran
- Iran
- Solar Cell and Fuel Cell Lab
| | - Khadijeh Hooshyari
- Department of Applied Chemistry
- Faculty of Chemistry
- Urmia University
- Urmia
- Iran
| | - Alireza Badiei
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | - Mina Adibi
- Gas Transportation and Processing Technology Development Division
- Research Institute of Petroleum Industry (RIPI)
- Tehran
- Iran
| |
Collapse
|
18
|
A simple self-regulating permeability and selectivity of poly (arylene ether ketone) with amino groups for gas separation membrane. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Hou L, Wang Z, Xu J, Chen Z. Poly(arylene ether ketone) containing amino and fluorenyl groups for highly selective of gas separation. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1906-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Lee H, Han J, Kim K, Kim J, Kim E, Shin H, Lee JC. Highly sulfonated polymer-grafted graphene oxide composite membranes for proton exchange membrane fuel cells. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Li HQ, Liu XJ, Yang H, Wang Z, He J. Enhanced proton conductivity and relative selectivity of sulfonated poly(arylene ether ketone sulfone) proton exchange membranes by using triazole-grafted 3-Glycidyloxypropyltrimethoxysilane. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Hu H, Sui Y, Ueda M, Qian J, Wang L, Zhang X. Multi-block sulfonated poly(arylene ether nitrile) polymers bearing oligomeric benzotriazole pendants with exceptionally high H2/O2 fuel cell performance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Facile preparation of blend proton exchange membranes with highly sulfonated poly(arylene ether) and poly(arylene ether sulfone) bearing dense triazoles. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Lim MY, Kim K. Sulfonated Poly(Arylene Ether Sulfone) and Perfluorosulfonic Acid Composite Membranes Containing Perfluoropolyether Grafted Graphene Oxide for Polymer Electrolyte Membrane Fuel Cell Applications. Polymers (Basel) 2018; 10:E569. [PMID: 30966603 PMCID: PMC6403734 DOI: 10.3390/polym10060569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022] Open
Abstract
Sulfonated poly(arylene ether sulfone) (SPAES) and perfluorosulfonic acid (PFSA) composite membranes were prepared using perfluoropolyether grafted graphene oxide (PFPE-GO) as a reinforcing filler for polymer electrolyte membrane fuel cell (PEMFC) applications. PFPE-GO was obtained by grafting poly(hexafluoropropylene oxide) having a carboxylic acid end group onto the surface of GO via ring opening reaction between the carboxylic acid group in poly(hexafluoropropylene oxide) and the epoxide groups in GO, using 4-dimethylaminopyridine as a base catalyst. Both SPAES and PFSA composite membranes containing PFPE-GO showed much improved mechanical strength and dimensional stability, compared to each linear SPAES and PFSA membrane, respectively. The enhanced mechanical strength and dimensional stability of composite membranes can be ascribed to the homogeneous dispersion of rigid conjugated carbon units in GO through the increased interfacial interactions between PFPE-GO and SPAES/PFSA matrices.
Collapse
Affiliation(s)
- Min-Young Lim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanak⁻ro, Gwanak⁻gu, Seoul 151⁻744, Korea.
| | - Kihyun Kim
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
25
|
Comb-shaped polysulfones containing sulfonated polytriazole side chains for proton exchange membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Wang K, Yang L, Wei W, Zhang L, Chang G. Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.067] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Bu F, Zhang Y, Hong L, Zhao W, Li D, Li J, Na H, Zhao C. 1,2,4-Triazole functionalized poly(arylene ether ketone) for high temperature proton exchange membrane with enhanced oxidative stability. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.09.072] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Wang C, Zhou Y, Shen B, Zhao X, Li J, Ren Q. Proton-conducting poly(ether sulfone ketone)s containing a high density of pendant sulfonic groups by a convenient and mild post-sulfonation. Polym Chem 2018. [DOI: 10.1039/c8py00996a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A class of new poly(ether sulfone ketone)s containing a high density of pendant sulfonic groups on the sulfonated structural units were designed and the resulting membranes exhibited overall good performance at low IEC levels.
Collapse
Affiliation(s)
- Chenyi Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Yuanpeng Zhou
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Bin Shen
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Xiaoyan Zhao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Jian Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Qiang Ren
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Changzhou University
- Changzhou 213164
- China
| |
Collapse
|
29
|
Synthesis and characterization of poly(styrene sulfonic acid-co-1-vinylimidazole-co-styrene) and its blends with poly(vinyl chloride) as proton conducting membranes. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2240-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Huo J, Hu Z, Chen D, Luo S, Wang Z, Gao Y, Zhang M, Chen H. Preparation and Characterization of Poly-1,2,3-triazole with Chiral 2(5 H)-Furanone Moiety as Potential Optical Brightening Agents. ACS OMEGA 2017; 2:5557-5564. [PMID: 31457821 PMCID: PMC6644745 DOI: 10.1021/acsomega.7b00196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/25/2017] [Indexed: 05/26/2023]
Abstract
A series of novel heterocyclic polymers with fluorescent brightening properties are synthesized via Click polymerization. Fast synthesis of poly-1,2,3-triazoles (M n ≥ 9.31 kDa) is described herein, with a high yield of up to 95%. The Click polymerization approach has a number of advantages, including facile operation and outstanding isolation yield. The resultant polymers have a high thermal stability, excellent UV resistance, as well as acid and light fastness. On embedding with optical brightening agents, the polymers display strong fluorescent brightening properties in the tetrahydrofuran solution. Moreover, these products have a strong solution emission intensity and extraordinary photostability under UV light.
Collapse
Affiliation(s)
- Jingpei Huo
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510641, P. R.
China
| | - Zhudong Hu
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| | - Dongchu Chen
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| | - Shihe Luo
- School
of Chemistry and Environment, South China
Normal University, Guangzhou 510006, P. R. China
| | - Zhaoyang Wang
- School
of Chemistry and Environment, South China
Normal University, Guangzhou 510006, P. R. China
| | - Yonghui Gao
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| | - Min Zhang
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| | - Hong Chen
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| |
Collapse
|
31
|
Xie Y, Liu D, Li D, Han X, Li S, Chen Z, Zhang H, Pang J, Jiang Z. Highly proton conducting proton-exchange membranes based on fluorinated poly(arylene ether ketone)s with octasulfonated segments. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28857] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yunji Xie
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| | - Di Liu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| | - Danqi Li
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| | - Xiaocui Han
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| | - Su Li
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| | - Zheng Chen
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| | - Haibo Zhang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| | - Jinhui Pang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| | - Zhenhua Jiang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education; Jilin University; Changchun 130012 People's Republic of China
| |
Collapse
|
32
|
Sangthumchai T, Youngme S, Martwiset S. Polyacrylonitrile-based proton conducting membranes containing sulfonic acid and tetrazole moieties. J Appl Polym Sci 2017. [DOI: 10.1002/app.45411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Thanakorn Sangthumchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry; Materials Chemistry Research Center, Faculty of Science, Khon Kaen University; Khon Kaen 40002 Thailand
- Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage; Khon Kaen Thailand
| | - Sujittra Youngme
- Department of Chemistry and Center of Excellence for Innovation in Chemistry; Materials Chemistry Research Center, Faculty of Science, Khon Kaen University; Khon Kaen 40002 Thailand
| | - Surangkhana Martwiset
- Department of Chemistry and Center of Excellence for Innovation in Chemistry; Materials Chemistry Research Center, Faculty of Science, Khon Kaen University; Khon Kaen 40002 Thailand
- Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage; Khon Kaen Thailand
| |
Collapse
|
33
|
Kim K, Bae J, Lim MY, Heo P, Choi SW, Kwon HH, Lee JC. Enhanced physical stability and chemical durability of sulfonated poly(arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.10.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Tang J, Wan L, Zhou Y, Ye L, Zhou X, Huang F. Synthesis and performance study of a novel sulfonated polytriazole proton exchange membrane. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3421-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|