1
|
Wang Y, Zhang Q, Zhang Z. Dual-Mode Textile Sensor Based on PEDOT:PSS/SWCNTs Composites for Pressure-Temperature Detection. MICROMACHINES 2025; 16:92. [PMID: 39858747 PMCID: PMC11767976 DOI: 10.3390/mi16010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
As an innovative branch of electronics, intelligent electronic textiles (e-textiles) have broad prospects in applications such as e-skin, human-computer interaction, and smart homes. However, it is still a challenge to distinguish multiple stimuli in the same e-textile. Herein, we propose a dual-parameter smart e-textile that can detect human pulse and body temperature in real time, with high performance and no signal interference. The doping of SWCNTs in PEDOT:PSS improves the electrical conductivity and Seebeck coefficient of the prepared composites, which results in excellent pressure and temperature-sensing properties of the PEDOT:PSS/SWCNTs/CS@PET-textile (PSCP) sensor. The dual-mode sensor has high sensitivity (32.4 kPa-1), fast response time (~21 ms), and excellent durability (>2000 times) in pressure detection. Concurrently, this sensor maintains a high Seebeck coefficient of 25 μV/K in the 0-120 K temperature range with a tremendous linear relationship. Based on impressive dual-mode sensing characteristics and independent temperature-difference- and pressure-sensing mechanisms, smart e-textile sensors realize the real-time simultaneous monitoring of weak pulse signals and human body temperature, showing great potential in medical healthcare. In addition, the potential energy is excited by the temperature gradient between the human skin and the environment, which provides a novel idea for wearable self-powered devices.
Collapse
Affiliation(s)
- Ying Wang
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Qingchao Zhang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China;
| | - Zhidong Zhang
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| |
Collapse
|
2
|
Sajjadi M, Nasrollahzadeh M, Ghafuri H. Functionalized chitosan-inspired (nano)materials containing sulfonic acid groups: Synthesis and application. Carbohydr Polym 2024; 343:122443. [PMID: 39174086 DOI: 10.1016/j.carbpol.2024.122443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Nature-inspired chitosan (CS) materials show a high potential for the design/fabrication of sustainable heterogeneous (nano)materials with extraordinary structural/physical features, such as superior biodegradability/biocompatibility, simplicity of chemical modification, environmental safety, high availability, cost-effectiveness, high electrochemical activity, good film-forming ability, and antioxidant, antimicrobial/antibacterial, and anticoagulant activities. Industrialization and growth of industrial wastes or by-products induce an increasing demand for the development of clean, low-cost, and renewable natural systems to minimize or eliminate the utilization of environmentally toxic compounds. The preparation of novel heterogeneous functionalized polysaccharide-inspired bio(nano)materials via chemical modifications of natural CS to improve its physicochemical/biochemical properties has recently become tremendously attractive for many researchers. The most abundantly available and cost-effective functionalized CS-inspired (nano)materials are considerably valuable in terms of the economic aspects of production of (nano)catalysts, (nano)hydrogels, (nano)composite/blend membranes, and thus their commercialization. In this respect, the preparation of functionalized CS-inspired (nano)materials containing -SO3H groups has been represented as a valid alternative to the homogenous unmodified biomaterials for various applications. Sulfonated derivatives of CS-inspired (nano)materials may possess huge surface areas, catalytic activity, adsorption, and biological/biomedical properties. This review article is aimed at the investigation of different methods and potential applications of sulfonated CS-inspired (nano)materials in catalysis, fuel cells, adsorption of ions, membranes, and biological applications.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
3
|
Beraldo CHM, Versteg A, Spinelli A, Scharnagl N, da Conceição TF. Anticorrosive properties of chitosan-derivatives coatings on Mg AZ31 alloy in Hank's Balanced Salt Solution. Int J Biol Macromol 2024; 260:129390. [PMID: 38218288 DOI: 10.1016/j.ijbiomac.2024.129390] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
This study describes the preparation of chitosan-derivatives coatings on AZ31 Mg alloy for corrosion protection in Hank's Balanced Salt Solution (HBSS). The derivatives were prepared by reacting chitosan with natural aldehydes (vanillin, benzaldehyde and cinnamaldehyde) and the coatings were characterized by means of water contact angle, scanning electron microscopy and swelling essays. The corrosion behavior of the samples was investigated using potentiodynamic polarization, electrochemical impedance spectroscopy and hydrogen evolution essays. All derivatives present superior corrosion protection than neat chitosan and the best performance is observed for the vanillin derivative with the highest modification degree, which present hydrogen evolution rate of 0.05 mL cm-2 day-1, below the tolerance limit for biomedical application, and |Z|max in the order of 104.6 Ω cm2 even after 14 days of exposure to the corrosive solution.
Collapse
Affiliation(s)
| | - Augusto Versteg
- Chemistry Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil.
| | - Almir Spinelli
- Chemistry Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil.
| | - Nico Scharnagl
- Helmholtz-Zentrum Hereon GmbH, Institute of Surface Science, Geesthacht 21502, Germany.
| | - Thiago Ferreira da Conceição
- Materials Engineering Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; Chemistry Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil.
| |
Collapse
|
4
|
Ji YL, Yin MJ, An QF, Gao CJ. Recent developments in polymeric nano-based separation membranes. FUNDAMENTAL RESEARCH 2022; 2:254-267. [PMID: 38933154 PMCID: PMC11197816 DOI: 10.1016/j.fmre.2021.11.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022] Open
Abstract
Polymeric nanomaterials, which have tuneable chemical structures, versatile functionalities, and good compatibility with polymeric matrices, have attracted increasing interest from researchers for the construction of polymeric nano-based separation membranes. With their distinctive nanofeatures, polymeric nano-based membranes show great promise in overcoming bottlenecks in polymer membranes, namely, the trade-off between permeability and selectivity, low stability, and fouling issues. Accordingly, recent studies have focused on tuning the structures and tailoring the surface properties of polymeric nano-based membranes via exploitation of membrane fabrication techniques and surface modification strategies, with the objective of pushing the performance of polymeric nano-based membranes to a new level. In this review, first, the approaches for fabricating polymeric nano-based mixed matrix membranes and homogeneous membranes are summarized, such as surface coating, phase inversion, interfacial polymerization, and self-assembly methods. Next, the manipulation strategies of membrane surface properties, namely, the hydrophilicity/hydrophobicity, charge characteristics, and surface roughness, and interior microstructural properties, namely, the pore size and content, channel construction and regulation, are comprehensively discussed. Subsequently, the separation performances of liquid ions/molecules and gas molecules through polymeric nano-based membranes are systematically reported. Finally, we conclude this review with an overview of various unsolved scientific and technical challenges that are associated with new opportunities in the development of advanced polymeric nano-based membranes.
Collapse
Affiliation(s)
- Yan-Li Ji
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ming-Jie Yin
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Cong-Jie Gao
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Jin CG, Yin MJ, Wu JK, Zhang WH, Wang N, An QF. Development of high-performance and robust membrane via ‘hard-crosslinking-soft’ technique for dehydration of acetic acid. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Tiruneh Adugna A. Development in nanomembrane-based filtration of emerging contaminants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Recently, the concentration of emerging contaminants is increasing in drinking water sources, industrial wastewater, and reclaimed water. It is not possible to remove the emerging contaminants using conventional methods, and the interest to use nanomembrane-based filtration is getting attention. A nanomembrane-based filtration can be manipulated without the use of any special equipment. Different research findings reported better removal of emerging contaminants has been achieved using nanomembrane-based filtration. Moreover, new developments have been examined and implemented at different levels and are expected to continue. Therefore, this chapter provides a brief overview of recent developments on nanomembrane-based filtration processes in the removal of emerging contaminants from drinking water sources, industrial wastewater, and reclaimed water.
Collapse
Affiliation(s)
- Amare Tiruneh Adugna
- Department of Environmental Engineering , Addis Ababa Science and Technology University, College of Biological and Chemical Engineering , Addis Ababa , Ethiopia
| |
Collapse
|
7
|
Castro-Muñoz R, González-Valdez J, Ahmad MZ. High-performance pervaporation chitosan-based membranes: new insights and perspectives. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Today, the need of replacing synthetic polymers in the membrane preparation for diverse pervaporation (PV) applications has been recognized collectively and scientifically. Chitosan (CS), a bio-polymer, has been studied and proposed to achieve this goal especially in specific azeotropic water-organic, organic-water, and organic-organic separations, as well as in assisting specific processes (e.g. seawater desalination and chemical reactions). Different concepts of CS-based membranes have been developed, which include material blending and composite and mixed matrix membranes which have been tested for different separations. Hereby, the goal of this review is to provide a critical overview of the ongoing CS-based membrane developments, paying a special attention to the most relevant findings and results in the field. Furthermore, future trends of CS-based membranes in PV technology are presented, as well as concluding remarks and suggested strategies for the new scientist in the field.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas , 2000 San Antonio Buenavista , 50110 Toluca de Lerdo , Mexico
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science , Av. Eugenio Garza Sada 2501 , Monterrey, N.L. 64849 , Mexico
| | - M. Zamidi Ahmad
- Organic Materials Innovation Center (OMIC) , University of Manchester , Oxford Road , Manchester M13 9PL , UK
| |
Collapse
|
8
|
Achari DD, Naik SR, Kariduraganavar MY. Effects of different plasticizers on highly crosslinked NaAlg/PSSAMA membranes for pervaporative dehydration of tert-butanol. NEW J CHEM 2020. [DOI: 10.1039/c9nj05466a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Polystyrene sulfonic acid-co-maleic acid (PSSAMA) crosslinked sodium alginate (NaAlg) membranes were developed by incorporating diethyl phthalate (DEP), dibutyl phthalate (DBP) and dioctyl phthalate (DOP).
Collapse
Affiliation(s)
- Divya D. Achari
- Department of Chemistry
- Karnatak University
- Dharwad – 580 003
- India
| | | | | |
Collapse
|
9
|
Zhang SY, Zhuang Q, Zhang M, Wang H, Gao Z, Sun JK, Yuan J. Poly(ionic liquid) composites. Chem Soc Rev 2020; 49:1726-1755. [DOI: 10.1039/c8cs00938d] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review highlights recent advances in the development of poly(ionic liquid)-based composites for diverse materials applications.
Collapse
Affiliation(s)
- Su-Yun Zhang
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
- College of Physics and Optoelectronic Engineering
| | - Qiang Zhuang
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Miao Zhang
- Department of Materials and Environmental Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education)
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin
| | - Zhiming Gao
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
| | - Jian-Ke Sun
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| |
Collapse
|
10
|
3D re-crosslinking of an acid-resistant layer on NaA tubular membrane for application in acidic feed. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Lin YF, Ho JC, Andrew Lin KY, Tung KL, Chung TW, Lee CC. A drying-free and one-step process for the preparation of siloxane/CS mixed-matrix membranes with outstanding ethanol dehydration performances. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Jyothi MS, Reddy KR, Soontarapa K, Naveen S, Raghu AV, Kulkarni RV, Suhas DP, Shetti NP, Nadagouda MN, Aminabhavi TM. Membranes for dehydration of alcohols via pervaporation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:415-429. [PMID: 31063879 DOI: 10.1016/j.jenvman.2019.04.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Alcohols are the essential chemicals used in a variety of pharmaceutical and chemical industries. The extreme purity of alcohols in many of such industrial applications is essential. Though distillation is one of the methods used conventionally to purify alcohols, the method consumes more energy and requires carcinogenic entertainers, making the process environmentally toxic. Alternatively, efforts have been made to focus research efforts on alcohol dehydration by the pervaporation (PV) separation technique using polymeric membranes. The present review is focused on alcohol dehydration using PV separation technique, which is the most efficient and benign method of purifying alcohols that are required in fine chemicals synthesis and developing pharmaceutical formulations. This review will discuss about the latest developments in the area of PV technique used in alcohol dehydration using a variety of novel membranes.
Collapse
Affiliation(s)
- M S Jyothi
- Department of Chemical Technology, Faculty of Sciences, & Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 10330, Thailand
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - K Soontarapa
- Department of Chemical Technology, Faculty of Sciences, & Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 10330, Thailand
| | - S Naveen
- Department of Basic Sciences, Center for Emerging Technology, SET, JAIN Deemed to be University, Bangalore 562 112, India
| | - Anjanapura V Raghu
- Department of Basic Sciences, Center for Emerging Technology, SET, JAIN Deemed to be University, Bangalore 562 112, India.
| | - Raghavendra V Kulkarni
- Department of Pharmaceutics, BLDEA's SSM College of Pharmacy and Research Centre, Vijayapur, 586 103, Karnataka, India
| | - D P Suhas
- Department of Chemistry, St. Joseph's College, Langford Road, Bangalore, 560027, India
| | - Nagaraj P Shetti
- Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi, 580030, India
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
13
|
Wu JK, Ye CC, Zhang WH, Wang NX, Lee KR, An QF. Construction of well-arranged graphene oxide/polyelectrolyte complex nanoparticles membranes for pervaporation ethylene glycol dehydration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Zhu J, Liao J, Jin W, Luo B, Shen P, Sotto A, Shen J, Gao C. Effect of functionality of cross-linker on sulphonated polysulfone cation exchange membranes for electrodialysis. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Pervaporation dehydration of fusel oil with sulfated polyelectrolyte complex hollow fiber membrane. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Wang M, Pan F, Yang L, Song Y, Wu H, Cheng X, Liu G, Yang H, Wang H, Jiang Z, Cao X. Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Luo P, Nie M, Wen H, Xu W, Fan L, Cao Q. Preparation and characterization of carboxymethyl chitosan sulfate/oxidized konjac glucomannan hydrogels. Int J Biol Macromol 2018; 113:1024-1031. [DOI: 10.1016/j.ijbiomac.2018.01.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/06/2018] [Accepted: 01/15/2018] [Indexed: 12/25/2022]
|
18
|
Enhanced dehydration performance of hybrid membranes by incorporating fillers with hydrophilic-hydrophobic regions. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Chen KF, Zheng PY, Wu JK, Wang NX, An QF, Lee KR. Polyelectrolyte complexes/silica hybrid hollow fiber membrane for fusel oils pervaporation dehydration processes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Nanostructured polyelectrolyte-surfactant complex pervaporation membranes for ethanol recovery: the relationship between the membrane structure and separation performance. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2006-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Liu J, Bernstein R. High-flux thin-film composite polyelectrolyte hydrogel membranes for ethanol dehydration by pervaporation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Liao YL, Hu CC, Lai JY, Liu YL. Crosslinked polybenzoxazine based membrane exhibiting in-situ self-promoted separation performance for pervaporation dehydration on isopropanol aqueous solutions. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.02.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
|