1
|
Liu J, Ban Y, Zhu G, Hu Z, Yang W. Nanoconfined Ultrathin Polymer Membrane for Ultrafast Separation of Biobutanol from Water. Angew Chem Int Ed Engl 2025:e202503501. [PMID: 40268721 DOI: 10.1002/anie.202503501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/27/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Efficient recovery of biobutanol, a next-generation biofuel, from fermentation liquor remains challenging due to its low concentration and volatility. This study introduces ultrathin rubbery polymer membranes developed through an interfacial dissolution-crosslinking method, with cross-linked polysiloxane confined within the permanent nanovoids of ceramic alumina substrates. The resulting membranes, which are less than 10 nm thick, achieve unparalleled performance: concentrating 1.0 wt% aqueous n-butanol 14.2-fold with a record-high liquid flux of 110 kg m-2 h-1-one to two orders of magnitude greater than those of previously reported membranes. These advancements suggest significant reductions in the membrane area and operational costs for large-scale biobutanol separation, establishing a sustainable and economical solution for biofuel production.
Collapse
Affiliation(s)
- Jiayi Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P.R. China
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Yujie Ban
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P.R. China
| | - Guangqi Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Ziyi Hu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P.R. China
| |
Collapse
|
2
|
Pang S, Ma L, Yang Y, Chen H, Lu L, Yang S, Baeyens J, Si Z, Qin P. A High-Quality Mixed Matrix Membrane with Nanosheets Assembled and Uniformly Dispersed Fillers for Ethanol Recovery. Macromol Rapid Commun 2024; 45:e2400384. [PMID: 39096156 DOI: 10.1002/marc.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Indexed: 08/05/2024]
Abstract
A high-quality filler within mixed matrix membranes, coupled with uniform dispersity, endows a high-efficiency transfer pathway for the significant improvement on separation performance. In this work, a zeolite-typed MCM-22 filler is reported that is doped into polydimethylsiloxane (PDMS) matrix by ultrafast photo-curing technique. The unique structure of nanosheets assembly layer by layer endows the continuous transfer channels towards penetrate molecules because of the inter-connective nanosheets within PDMS matrix. Furthermore, an ultrafast freezing effect produced by fast photo-curing is used to overcome the key issue, namely filler aggregation, and further eliminates defects. When pervaporative separating a 5 wt% ethanol aqueous solution, the resulting MCM-22/PDMS membrane exhibits an excellent membrane flux of 1486 g m-2 h-1 with an ethanol separation factor of 10.2. Considering a biobased route for ethanol production, the gas stripping and vapor permeation through this membrane also shows a great enrichment performance, and the concentrated ethanol is up to 65.6 wt%. Overall, this MCM-22/PDMS membrane shows a high separation ability for ethanol benefited from a unique structure deign of fillers and ultrafast curing speed of PDMS, and has a great potential for bioethanol separation from cellulosic ethanol fermentation.
Collapse
Affiliation(s)
- Siyu Pang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liang Ma
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai, 201208, P. R. China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Huidong Chen
- High-Tech Reacher Institute, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lu Lu
- Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Jan Baeyens
- Department of Chemical Engineering, Sint-Katelijne-Waver, Ku Leuven, 2860, Belgium
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Guo H, Fang Y, Li J, Feng W, Fang C, Zhu L. Continuous Covalent Organic Framework Membranes with Ordered Nanochannels as Tunable Transport Layers for Fast Butanol/Water Separation. NANO LETTERS 2024; 24:11438-11445. [PMID: 39240764 DOI: 10.1021/acs.nanolett.4c02458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Polymeric membranes with high permselective performance are desirable for energy-saving bioalcohol separations. However, it remains challenging to design membrane microstructures with low-resistance channels and a thin thickness for fast alcohol transport. Herein, we demonstrate highly crystalline covalent organic framework (COF) membranes with ordered nanochannels as tunable transport layers for efficient butanol/water separation. The thickness was well-regulated by altering the concentration and molar ratio of two aldehyde monomers with different reactivity. The surface-integrated poly(dimethylsiloxane) produced defect-free and hydrophobic COF membranes. The membrane with continuous transport channels exhibited an exceptional flux of up to 18.8 kg m-2 h-1 and a pervaporation separation index of 217.7 kg m-2 h-1 for separating 5 wt % n-butanol/water. The separation efficiency exceeded that of analogous membranes. The calculated mass-transfer coefficient of butanol followed an inverse relationship with the COF membrane thickness. Consequently, this work reveals the great potential of crystalline polymeric membranes with high-density nanopores for biofuel recovery.
Collapse
Affiliation(s)
- Hukang Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yijie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiaqi Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Weilin Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| |
Collapse
|
4
|
Gallardo MR, Nicole Duena A, Belle Marie Yap Ang M, Rolly Gonzales R, Millare JC, Aquino RR, Li CL, Tsai HA, Huang SH, Lee KR. Improved Pervaporation Dehydration Performance of Alginate Composite Membranes by Embedding Organo-Montmorillonite. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Liquid-liquid interface induced high-flux PEBA pervaporation membrane for ethanol recovery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
6
|
Kachhadiya DD, Murthy Z. Separation of n-butanol from aqueous mixtures using TiO2 and h-BN functionalized MIL-101(Cr) incorporated PVDF mixed matrix membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Rosenthal JJ, Hsieh IM, Malmali MM. ZSM-5/Thermoplastic Polyurethane Mixed Matrix Membranes for Pervaporation of Binary and Ternary Mixtures of n-Butanol, Ethanol, and Water. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justin J. Rosenthal
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas 79409, United States
| | - I-Min Hsieh
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas 79409, United States
| | - Mahdi M. Malmali
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas 79409, United States
| |
Collapse
|
8
|
Arcanjo Gonçalves BJ, de Souza Figueiredo KC. Developments in downstream butanol separation from ABE fermentation. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bruno José Arcanjo Gonçalves
- Department of Chemical Engineering Universidade Federal de Minas Gerais Av. Antonio Carlos, 6627 Pampulha, Belo Horizonte CEP 31270-901 Brazil
| | - Kátia Cecília de Souza Figueiredo
- Department of Chemical Engineering Universidade Federal de Minas Gerais Av. Antonio Carlos, 6627 Pampulha, Belo Horizonte CEP 31270-901 Brazil
| |
Collapse
|
9
|
Ehsan M, Razzaq H, Razzaque S, Bibi A, Yaqub A. Recent advances in sodium alginate‐based membranes for dehydration of aqueous ethanol through pervaporation. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mehwish Ehsan
- Department of Chemistry University of Wah Wah Cantt Pakistan
| | - Humaira Razzaq
- Department of Chemistry University of Wah Wah Cantt Pakistan
| | - Shumaila Razzaque
- School of Science, Department of Chemistry University of Management and Technology Lahore Pakistan
| | - Aasma Bibi
- Department of Chemistry University of Wah Wah Cantt Pakistan
| | - Azra Yaqub
- Chemistry Division, Directorate of Science Pakistan Institute of Nuclear Science and Technology (PINSTECH), 45650 Pakistan
| |
Collapse
|
10
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Development of dynamic PVA/PAN membranes for pervaporation: correlation between kinetics of gel layer formation, preparation conditions, and separation performance. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Arregoitia-Sarabia C, González-Revuelta D, Fallanza M, Ortiz A, Gorri D. Polyether-block-amide thin-film composite hollow fiber membranes for the recovery of butanol from ABE process by pervaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
|
14
|
Mao H, Li SH, Zhang AS, Xu LH, Lu HX, Lv J, Zhao ZP. Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53(Al) synthesized via high efficiency solvent-controlled microwave. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
The fabrication, characterization, and pervaporation performance of poly(ether-block-amide) membranes blended with 4-(trifluoromethyl)-N(pyridine-2-yl)benzamide and 4-(dimethylamino)-N(pyridine-2-yl)benzamide fillers. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Chen Y, Qin J, Tong T, Zhou H, Cao X, Jin W. Study on the effect of crosslinking temperature on microporous polyamide membrane structure and its nitrogen/cyclohexane separation performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Abdul Wahab MS, Abd Rahman S, Abu Samah R. Super selective dual nature GO bridging PSF-GO-Pebax thin film nanocomposite membrane for IPA dehydration. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1836211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mohamad Syafiq Abdul Wahab
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, Malaysia
| | - Sunarti Abd Rahman
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, Malaysia
| | - Rozaimi Abu Samah
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, Malaysia
| |
Collapse
|
18
|
|
19
|
Elyasi Kojabad M, Momeni M, Babaluo AA, Vaezi MJ. PEBA/PSf Multilayer Composite Membranes for CO
2
Separation: Influence of Dip Coating Parameters. Chem Eng Technol 2020. [DOI: 10.1002/ceat.201900262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mahdi Elyasi Kojabad
- Sahand University of TechnologyNanostructure Material Research Center (NMRC) P.O. Box 51335-1996 Tabriz Iran
| | - Masumeh Momeni
- Sahand University of TechnologyNanostructure Material Research Center (NMRC) P.O. Box 51335-1996 Tabriz Iran
| | - Ali Akbar Babaluo
- Sahand University of TechnologyNanostructure Material Research Center (NMRC) P.O. Box 51335-1996 Tabriz Iran
| | - Mohammad Javad Vaezi
- Sahand University of TechnologyNanostructure Material Research Center (NMRC) P.O. Box 51335-1996 Tabriz Iran
| |
Collapse
|
20
|
Cheng C, Liu F, Yang HK, Xiao K, Xue C, Yang ST. High-Performance n-Butanol Recovery from Aqueous Solution by Pervaporation with a PDMS Mixed Matrix Membrane Filled with Zeolite. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chi Cheng
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fangfang Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hopen K. Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kaijun Xiao
- College of Light Industry and Food Science, South China University of Technology, Guangdong 510641, China
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Li W, Li J, Wang N, Li X, Zhang Y, Ye Q, Ji S, An QF. Recovery of bio-butanol from aqueous solution with ZIF-8 modified graphene oxide composite membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Mao H, Li SH, Zhang AS, Xu LH, Lu JJ, Zhao ZP. Novel MOF-capped halloysite nanotubes/PDMS mixed matrix membranes for enhanced n-butanol permselective pervaporation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117543] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Sajjad Z, Gilani MA, Nizami AS, Bilad MR, Khan AL. Development of novel hydrophilic ionic liquid membranes for the recovery of biobutanol through pervaporation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109618. [PMID: 31563603 DOI: 10.1016/j.jenvman.2019.109618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/10/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
This paper aims to develop novel hydrophilic ionic liquid membranes using pervaporation for the recovery of biobutanol. Multiple polyvinyl alcohol (PVA) membranes based on three commercial ionic liquids with different loading were prepared for various experimental trials. The ionic liquids selected for the study include tributyl (tetradecyl) phosphonium chloride ([TBTDP][Cl]), tetrabutyl phosphonium bromide ([TBP][Br]) and tributyl methyl phosphonium methylsulphate ([TBMP][MS]). The synthesized membranes were characterized and tested in a custom-built pervaporation set-up. All ionic liquid membranes showed better results with total flux of 1.58 kg/m2h, 1.43 kg/m2h, 1.38 kg/m2h at 30% loading of [TBP][Br], [TBMP][MS] and [TBTDP][Cl] respectively. The comparison of ionic liquid membranes revealed that by incorporating [TBMP]MS to PVA matrix resulted in a maximum separation factor of 147 at 30 wt% loading combined with a relatively higher total flux of 1.43 kg/m2h. Density functional theory (DFT) calculations were also carried out to evaluate the experimental observations along with theoretical studies. The improved permeation properties make these phosphonium based ionic liquid a promising additive in PVA matrix for butanol-water separation under varying temperature conditions.
Collapse
Affiliation(s)
- Zabia Sajjad
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Abdul-Sattar Nizami
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 8, Perak, Malaysia
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan.
| |
Collapse
|
24
|
He Z, Lyu Z, Gu Q, Zhang L, Wang J. Ceramic-based membranes for water and wastewater treatment. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.074] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
In situ preparation of COF-LZU1 in poly(ether-block-amide) membranes for efficient pervaporation of n-butanol/water mixture. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
The potential of pervaporation for biofuel recovery from fermentation: An energy consumption point of view. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.09.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Pan Y, Hang Y, Zhao X, Liu G, Jin W. Optimizing separation performance and interfacial adhesion of PDMS/PVDF composite membranes for butanol recovery from aqueous solution. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Liu Q, Li Y, Li Q, Liu G, Liu G, Jin W. Mixed-matrix hollow fiber composite membranes comprising of PEBA and MOF for pervaporation separation of ethanol/water mixtures. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.01.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Guo YF, Sun PC, Wei JF. New insight into the fouling behavior of hydrophobic and hydrophilic polypropylene membranes in integrated membrane bioreactors. ENVIRONMENTAL TECHNOLOGY 2018; 39:3159-3168. [PMID: 28868976 DOI: 10.1080/09593330.2017.1375023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/26/2017] [Indexed: 06/07/2023]
Abstract
To investigate the effect of hydrophobic and hydrophilic polypropylene hollow fiber membranes (PPHFMs) applied in membrane bioreactors (MBR), the fouling behaviors of membrane surfaces and pores have been tested. The structural and morphological features on the membrane surface were characterized using attenuated total reflection-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscope, energy dispersive X-ray spectroscopy and laser granularity distribution analysis. The results showed that significantly more polysaccharide, protein and inorganic ingredients were accumulated in the original membrane compared to the hydrophilic membrane. Furthermore, it was found that the pore size influenced the particle distribution and accumulation, such that smaller pore size membranes tended to contain fewer pollutants and a narrow size distribution. Under a constant flux of 11.5 L/m2 h, the transmembrane pressure (TMP) varied narrowly between 38 and 53 KPa. Alongside this, a relatively hydrophilic membrane (PP-g-AA) showed the characteristics of lower TMP in comparison to hydrophobic membranes (PP). Indeed, the flux recovery was 30% higher than those of the original PPHFM. This investigation broadens our understanding of membrane modifying and fouling behavior in integrated MBRs.
Collapse
Affiliation(s)
- Yan-Fen Guo
- a School of Material Science and Engineering , Tianjin Polytechnic University , Tianjin , People's Republic of China
| | - Pi-Chao Sun
- b School of Environmental and Chemical Engineering , Tianjin Polytechnic University , Tianjin , People's Republic of China
| | - Jun-Fu Wei
- b School of Environmental and Chemical Engineering , Tianjin Polytechnic University , Tianjin , People's Republic of China
- c State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin Polytechnic University , Tianjin , People's Republic of China
| |
Collapse
|
30
|
Tang T, Ling T, Xu M, Wang W, Zheng Z, Qiu Z, Fan W, Li L, Wu Y. Selective Recovery of n-Butanol from Aqueous Solutions with Functionalized Poly(epoxide ionic liquid)-Based Polyurethane Membranes by Pervaporation. ACS OMEGA 2018; 3:16175-16183. [PMID: 31458254 PMCID: PMC6644041 DOI: 10.1021/acsomega.8b02219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/19/2018] [Indexed: 06/10/2023]
Abstract
In this study, hydroxyl-terminated polybutadiene-poly(epoxide ionic liquid)-poly(urethane urea) (HTPB-PEIL-PU) membranes, HTPB-PEIL1-PU and HTPB-PEIL2-PU, were prepared by the reaction of functionalized PEIL, poly(1-methylimidazole-3-methyl-ethyloxy)hexafluorophosphate or poly(1-methylimidazole-3-methyl-ethyloxy)bistrifluoromethanesulfonimidate, respectively, with HTPB using 4,4'-diphenylmethane diisocyanate (MDI) as the chain extender. The HTPB-PEIL-PU and HTPB membranes were investigated for the selective recovery of n-butanol from aqueous solutions by pervaporation. PEIL was confirmed to be successfully embedded in the PU membranes by 1H NMR, Fourier transform infrared, and differential scanning calorimetry measurements. According to our mechanical measurements, the HTPB-PEIL-PU membranes retain the mechanical properties of the original PU membrane. PEIL was shown to enhance the diffusion rate of n-butanol significantly based on swelling behavior tests. The pervaporation flux through the HTPB-PEIL1-PU membrane increased with increasing feed temperature and feed concentration. In contrast, the separation factor of the HTPB-PEIL1-PU membrane increased with increasing feed temperature but decreased with increasing feed concentration. In addition, the HTPB-PEIL2-PU membrane exhibited an optimal separation factor of up to 29.2 at a feed concentration of 3% and a feed temperature of 70 °C, which is superior to that (22.7) through pure HTPB membranes. Furthermore, the HTPB-PEIL1-PU and HTPB-PEIL2-PU membranes show better long-term stability than other supported ionic liquid membranes.
Collapse
Affiliation(s)
- Tianyi Tang
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Tong Ling
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Mengfei Xu
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Weiping Wang
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Zhi Zheng
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Zhonglin Qiu
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Wenling Fan
- College
of Pharmacy, Nanjing University of Chinese
Medicine, 138 Xianlin
Avenue, Nanjing 210023, PR China
| | - Lei Li
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Youting Wu
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| |
Collapse
|
31
|
Ghadimi A, Norouzbahari S, Lin H, Rabiee H, Sadatnia B. Geometric restriction of microporous supports on gas permeance efficiency of thin film composite membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Zou Y, Liu Y, Muhammad Y, Tong Z, Feng X. Experimental and modelling studies of pervaporative removal of odorous diacetyl and S-methylthiobutanoate from aqueous solutions using PEBA membrane. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Guan K, Liang F, Zhu H, Zhao J, Jin W. Incorporating Graphene Oxide into Alginate Polymer with a Cationic Intermediate To Strengthen Membrane Dehydration Performance. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13903-13913. [PMID: 29608270 DOI: 10.1021/acsami.8b04093] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two-dimensional graphene oxide (GO) in hybrid membranes provides fast water transfer across its surface due to the abundant oxygenated functional groups to afford water sorption and the hydrophobic basal plane to create fast transporting pathways. To establish more compatible and efficient interactions for GO and sodium alginate (SA) polymer chains, cations sourced from lignin are employed to decorate GO (labeled as cation-functionalized GO (CG)) nanosheets via cation-π and π-π interactions, providing more interactive sites to confer synergetic benefits with polymer matrix. Cations from CG are also functional to partially interlock SA chains and intensify water diffusion. And with the aid of two-dimensional pathways of CG, fast selective water permeation can be realized through hybrid membranes with CG fillers. In dehydrating aqueous ethanol solution, the hybrid membrane exhibits considerable performance compared with bare SA polymer membrane (long-term stable permeation flux larger than 2500 g m-2 h-1 and water content larger than 99.7 wt %, with feed water content of 10 wt % under 70 °C). The effects of CG content in SA membrane were investigated, and the transport mechanism was correspondingly studied through varying operation conditions and membrane materials. In addition, such a membrane possesses long-term stability and almost unchanged high dehydration capability.
Collapse
Affiliation(s)
- Kecheng Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 5 Xinmofan Road , Nanjing 210009 , P. R. China
| | - Feng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 5 Xinmofan Road , Nanjing 210009 , P. R. China
| | - Haipeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 5 Xinmofan Road , Nanjing 210009 , P. R. China
| | - Jing Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 5 Xinmofan Road , Nanjing 210009 , P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 5 Xinmofan Road , Nanjing 210009 , P. R. China
| |
Collapse
|
34
|
|
35
|
Liu J, Li J, Chen Q, Li X. Performance of a pervaporation system for the separation of an ethanol-water mixture using fractional condensation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:1861-1869. [PMID: 29676743 DOI: 10.2166/wst.2018.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) composite membranes were fabricated and subsequently applied in ethanol recovery from an ethanol-water mixture by pervaporation (PV) using fractional condensation. The effects of feed temperature and feed flow velocity on the pervaporative properties of PDMS/PVDF composite membranes were investigated. Scanning electron microscopy (SEM) results showed that PDMS was coated uniformly on the surface of porous PVDF substrate, and the PDMS separation layer was dense with a thickness of 1.7 µm. Additionally, it was found that with increasing feed temperature, the total flux of the composite membrane increased, whereas the separation factor decreased. As the feed flow velocity increased, the total flux and separation factor increased. Besides, the permeate vapor was condensed by a two-stage fractional condenser maintained at different temperatures. The effects of the condensation conditions on fractions of ethanol-water vapor were studied to concentrate ethanol in product. The fractional condensers proved to be an effective way to enhance the separation efficiency. Under the optimum fractional condensation conditions, the second condenser showed a flux of 1,329 g/m2 h and the separation factor was increased to 17.2. Furthermore, the long-term operation stability was verified, indicating that the PV system incorporating fractional condensation was a promising approach to separate ethanol from the ethanol-water mixture.
Collapse
Affiliation(s)
- Jie Liu
- National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China and State Key Laboratory of Water Resource Protection and Utilization in Coal Mining of Shenhua Group, Beijing 100011, China E-mail: ; State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiding Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Quan Chen
- National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China and State Key Laboratory of Water Resource Protection and Utilization in Coal Mining of Shenhua Group, Beijing 100011, China E-mail:
| | - Xiaoduan Li
- National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China and State Key Laboratory of Water Resource Protection and Utilization in Coal Mining of Shenhua Group, Beijing 100011, China E-mail:
| |
Collapse
|
36
|
Kardani R, Asghari M, Mohammadi T, Afsari M. Effects of nanofillers on the characteristics and performance of PEBA-based mixed matrix membranes. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Mixed matrix membranes (MMMs) with superior structural and functional properties provide an interesting approach to enhance the separation properties of polymer membranes. As a matter of fact, MMMs combine the advantages of both components; polymeric continuous phase and nanoparticle dispersed phase. Generally, the separation performance of polymeric membranes suffers from an upper-performance limit. Hence, the incorporation of nanoparticles helps to overcome such limitations. Block copolymers such as poly(ether-block-amide) (PEBA) composed of immiscible soft ether segments as well as hard amide segments have been shown as excellent materials for the synthesis of membranes. Consequently, PEBA membranes have been extensively used in scientific research and industrial processes. It is thus aimed to provide an overview of PEBA MMMs. This review is especially devoted to summarizing the effects of nanoparticle loading on PEBA performance and properties such as selectivity, permeability, thermal and mechanical properties, and others. In addition, the preparation techniques of PEBA MMMs and solvent selection are discussed. This article also discusses the many types of nanoparticles incorporated into PEBA membranes. Furthermore, the future direction in PEBA MMMs research for separation processes is briefly predicted.
Collapse
Affiliation(s)
- Rokhsare Kardani
- Separation Processes Research Group, Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
| | - Morteza Asghari
- Separation Processes Research Group, Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
- Energy Research Institute, University of Kashan , Kashan , Iran
| | - Toraj Mohammadi
- Research and Technology Centre for Membrane Processes, Iran University of Science and Technology , Tehran , Iran
| | - Morteza Afsari
- Separation Processes Research Group, Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
| |
Collapse
|
37
|
Performance of commercial composite hydrophobic membranes applied for pervaporative reclamation of acetone, butanol, and ethanol from aqueous solutions: Binary mixtures. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
|
39
|
Highly gas permeable, ultrathin Teflon AF2400/γ-alumina composite hollow fiber membranes for dissolved gas analysis. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Nanostructured polyelectrolyte-surfactant complex pervaporation membranes for ethanol recovery: the relationship between the membrane structure and separation performance. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2006-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Jiménez-Bonilla P, Wang Y. In situ biobutanol recovery from clostridial fermentations: a critical review. Crit Rev Biotechnol 2017; 38:469-482. [PMID: 28920460 DOI: 10.1080/07388551.2017.1376308] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Butanol is a precursor of many industrial chemicals, and a fuel that is more energetic, safer and easier to handle than ethanol. Fermentative biobutanol can be produced using renewable carbon sources such as agro-industrial residues and lignocellulosic biomass. Solventogenic clostridia are known as the most preeminent biobutanol producers. However, until now, solvent production through the fermentative routes is still not economically competitive compared to the petrochemical approaches, because the butanol is toxic to their own producer bacteria, and thus, the production capability is limited by the butanol tolerance of producing cells. In order to relieve butanol toxicity to the cells and improve the butanol production, many recovery strategies (either in situ or downstream of the fermentation) have been attempted by many researchers and varied success has been achieved. In this article, we summarize in situ recovery techniques that have been applied to butanol production through Clostridium fermentation, including liquid-liquid extraction, perstraction, reactive extraction, adsorption, pervaporation, vacuum fermentation, flash fermentation and gas stripping. We offer a prospective and an opinion about the past, present and the future of these techniques, such as the application of advanced membrane technology and use of recent extractants, including polymer solutions and ionic liquids, as well as the application of these techniques to assist the in situ synthesis of butanol derivatives.
Collapse
Affiliation(s)
- Pablo Jiménez-Bonilla
- a Department of Biosystems Engineering , Auburn University , Auburn , AL , USA.,b Laboratory of Natural Products and Biological Assays (LAPRONEB), Chemistry Department , National University (UNA) , Heredia , Costa Rica
| | - Yi Wang
- a Department of Biosystems Engineering , Auburn University , Auburn , AL , USA.,c Center for Bioenergy and Bioproducts , Auburn University , Auburn , AL , USA
| |
Collapse
|
42
|
Cheng XQ, Konstas K, Doherty CM, Wood CD, Mulet X, Xie Z, Ng D, Hill MR, Lau CH, Shao L. Organic Microporous Nanofillers with Unique Alcohol Affinity for Superior Ethanol Recovery toward Sustainable Biofuels. CHEMSUSCHEM 2017; 10:1887-1891. [PMID: 28349608 DOI: 10.1002/cssc.201700362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/24/2017] [Indexed: 06/06/2023]
Abstract
To minimize energy consumption and carbon footprints, pervaporation membranes are fast becoming the preferred technology for alcohol recovery. However, this approach is confined to small-scale operations, as the flux of standard rubbery polymer membranes remain insufficient to process large solvent volumes, whereas membrane separations that use glassy polymer membranes are prone to physical aging. This study concerns how the alcohol affinity and intrinsic porosity of networked, organic, microporous polymers can simultaneously reduce physical aging and drastically enhance both flux and selectivity of a super glassy polymer, poly-[1-(trimethylsilyl)propyne] (PTMSP). Slight loss in alcohol transportation channels in PTMSP is compensated by the alcohol affinity of the microporous polymers. Even after continuous exposure to aqueous solutions of alcohols, PTMSP pervaporation membranes loaded with the microporous polymers outperform the state-of-the-art and commercial pervaporation membranes.
Collapse
Affiliation(s)
- Xi Quan Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, P.R. China
| | - Kristina Konstas
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
| | - Cara M Doherty
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
| | - Colin D Wood
- Australian Resources Research Centre, CSIRO, Kensington, WA6155, Australia
| | - Xavier Mulet
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
| | - Zongli Xie
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
| | - Derrick Ng
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
| | - Matthew R Hill
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Cher Hon Lau
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
- Department of Chemical Engineering, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
| |
Collapse
|
43
|
Nigiz FU, Hilmioglu ND. Fabrication of a novel polyhedral oligomeric silsesquioxanes/polyether-block
-amide nano-hybrid membrane for pervaporative separation of model fuel butanol. J Appl Polym Sci 2017. [DOI: 10.1002/app.45211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Filiz Ugur Nigiz
- Chemical Engineering Department; Kocaeli University; Kocaeli 41380 Turkey
| | | |
Collapse
|
44
|
|
45
|
|
46
|
Alberto M, Luque-Alled JM, Gao L, Iliut M, Prestat E, Newman L, Haigh SJ, Vijayaraghavan A, Budd PM, Gorgojo P. Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillers. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.061] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Novel hybrid process for bio-butanol recovery: Thermopervaporation with porous condenser assisted by phase separation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Zhou H, Zhang J, Wan Y, Jin W. Fabrication of high silicalite-1 content filled PDMS thin composite pervaporation membrane for the separation of ethanol from aqueous solutions. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.11.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Structure and Transport Properties of Mixed-Matrix Membranes Based on Polyimides with ZrO₂ Nanostars. Polymers (Basel) 2016; 8:polym8110403. [PMID: 30974679 PMCID: PMC6431868 DOI: 10.3390/polym8110403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/02/2022] Open
Abstract
Mixed-matrix membranes based on amorphous and semi-crystalline polyimides with zirconium dioxide (ZrO2) nanostars were synthesized. Amorphous poly(4,4′-oxydiphenylenepyromellitimide) and semi-crystalline polyimide prepared from 1,4-bis(4-aminophenoxy)benzene and 4,4’-oxydiphthalic anhydride were used. The effect of ZrO2 nanostars on the structure and morphology of nanocomposite membranes was studied by wide-angle X-ray scattering, scanning electron microscopy, atomic force microscopy, and contact angle measurements. Thermal properties and stability were investigated by thermogravimetric analysis and differential scanning calorimetry. Transport properties of hybrid membranes containing 5 wt % ZrO2 were tested for pervaporation of a mixture of butanol–water with 10 wt % H2O content. It was found that a significant amount of the ZrO2 added to the semi-crystalline polyimide is encapsulated inside spherulites. Therefore, the beneficial influence of inorganic filler on the selectivity of mixed-matrix membrane with respect to water was hampered. Mixed-matrix membranes based on amorphous polymer demonstrated the best performance, because water molecules had higher access to inorganic particles.
Collapse
|