1
|
PTFE porous membrane technology: A comprehensive review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
2
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Membrane-based air dehumidification: A comparative review on membrane contactors, separative membranes and adsorptive membranes. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
|
5
|
Hashemifard S, Ghodrati M, Rezaei M, Izadpanah A. Experimental study of gas dehydration via PDMS/CaCO3 NP-coated PVC hollow fiber membrane contactor. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.07.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Lefers RM, Tester M, Lauersen KJ. Emerging Technologies to Enable Sustainable Controlled Environment Agriculture in the Extreme Environments of Middle East-North Africa Coastal Regions. FRONTIERS IN PLANT SCIENCE 2020; 11:801. [PMID: 32714341 PMCID: PMC7343771 DOI: 10.3389/fpls.2020.00801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/19/2020] [Indexed: 05/24/2023]
Abstract
Despite global shifts in attitudes toward sustainability and increasing awareness of human impact on the environment, projected population growth and climate change require technological adaptations to ensure food and resource security at a global scale. Although desert areas have long been proposed as ideal sites for solar electricity generation, only recently have efforts shifted toward development of specialized and regionally focused agriculture in these extreme environments. In coastal regions of the Middle East and North Africa (MENA), the most abundant resources are consistent intense sunlight and saline sea water. MENA coastal regions hold incredible untapped potential for agriculture driven by the combination of key emerging technologies in future greenhouse concepts: transparent infrared collecting solar panels and low energy salt water cooling. These technologies can be combined to create greenhouses that drive regionally relevant agriculture in this extreme environment, especially when the target crops are salt-tolerant plants and algal biomass. Future controlled environment agriculture concepts will not compete for municipal fresh water and can be readily integrated into local human/livestock/fisheries food chains. With strategic technological implementation, marginal lands in these environments could participate in production of biomass, sustainable energy generation, and the circular carbon economy. The goal of this perspective is to reframe the idea of these environments as extreme, to having incredible untapped development potential.
Collapse
Affiliation(s)
- Ryan M. Lefers
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Texas AgriLife Research and Extension Center at Dallas, Texas A&M University, Dallas, TX, Unites States
| | - Mark Tester
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kyle J. Lauersen
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
7
|
The effect of Hydrogen sulfide oxidation with ultraviolet light and aeration on sour water treatment via membrane contactors. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Fakharnezhad A, Masoumi S, Keshavarz P. Analysis of design parameter effects on gas dehumidification in hollow fiber membrane contactor: Theoretical and experimental study. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Back JO, Brandstätter R, Spruck M, Koch M, Penner S, Rupprich M. Parameter Screening of PVDF/PVP Multi-Channel Capillary Membranes. Polymers (Basel) 2019; 11:polym11030463. [PMID: 30960447 PMCID: PMC6473566 DOI: 10.3390/polym11030463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/05/2022] Open
Abstract
The increasing research in the field of polymeric multi-channel membranes has shown that their mechanical stability is beneficial for a wide range of applications. The more complex interplay of formation process parameters compared to a single-channel geometry makes an investigation using Design of Experiments (DoE) appealing. In this study, seven-channel capillary membranes were fabricated in a steam–dry–wet spinning process, while varying the composition of the polymer solution and the process temperatures in a three-level fractional factorial linear screening design. The polymers polyvinylidene flouride (PVDF) was the chemically resistant main polymer and polyvinylpyrrolidone (PVP) was added as hydrophilic co-polymer. Scanning electron microscopy and atomic force microscopy were applied to study the membrane morphology. Fabrication process conditions were established to yield PVDF/PVP multi-channel membranes, which reached from high flux (permeability P = 321.4L/m2/h/bar, dextran 500 kDa retention R = 18.3%) to high retention (P = 66.8L/m2/h/bar, R = 80.0%). The concentration of the main polymer PVDF and the molecular weight of the co-polymer PVP showed linear relations with both P and R. The permeability could be increased using sodium hypochlorite post-treatment, although retention was slightly compromised. The obtained membranes may be suitable for micro- or ultra-filtration and, at the same time, demonstrate the merits and limitations of DoE for multi-channel membrane screening.
Collapse
Affiliation(s)
- Jan O Back
- Department of Environmental, Process & Energy Engineering, MCI-The Entrepreneurial School, Maximilianstrasse 2, 6020 Innsbruck, Austria.
| | - Rupert Brandstätter
- Department of Environmental, Process & Energy Engineering, MCI-The Entrepreneurial School, Maximilianstrasse 2, 6020 Innsbruck, Austria.
| | - Martin Spruck
- Department of Environmental, Process & Energy Engineering, MCI-The Entrepreneurial School, Maximilianstrasse 2, 6020 Innsbruck, Austria.
| | - Marc Koch
- Department of Environmental, Process & Energy Engineering, MCI-The Entrepreneurial School, Maximilianstrasse 2, 6020 Innsbruck, Austria.
| | - Simon Penner
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria.
| | - Marco Rupprich
- Department of Environmental, Process & Energy Engineering, MCI-The Entrepreneurial School, Maximilianstrasse 2, 6020 Innsbruck, Austria.
| |
Collapse
|
10
|
|
11
|
Poly(piperazine-amide)/PES Composite Multi-Channel Capillary Membranes for Low-Pressure Nanofiltration. Polymers (Basel) 2017; 9:polym9120654. [PMID: 30965955 PMCID: PMC6418675 DOI: 10.3390/polym9120654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022] Open
Abstract
The mechanical stability of conventional single-channel capillary fibres can be improved in a multi-channel geometry, which has previously found application in ultrafiltration. In this work, multi-channel polyethersulfone (PES) capillary membranes comprising seven feed channels were successfully fabricated in an enhanced steam–dry–wet spinning process and coated on the inner surface with a thin polyamide (PA) layer via interfacial polymerization (IP). The coating procedure consisted of impregnating the support multi-channel capillary membranes (MCM) with an aqueous piperazine solution, flushing with nitrogen gas to remove excess droplets, and pumping an organic trimesoylchloride solution through the channels. Insights into the interfacial polymerization process were gained through the investigation of various parameters, including monomer ratio, contact time, and drying time. Membranes were characterised via scanning electron microscopy (SEM), atomic force microscopy (AFM), and filtration experiments. The optimisation of both the PES support membrane and IP process parameters allowed for the fabrication of composite MCM with an MgSO4 rejection of 91.4% and a solute flux of 68.8 L m−2 h−1 at an applied pressure of 3 bar. The fabricated composite MCM demonstrates that a favourable multi-channel arrangement can be upgraded with a PA layer for application in low-pressure nanofiltration.
Collapse
|
12
|
Zhang HZ, Xu ZL, Tang YJ, Ding H. Highly chlorine-tolerant performance of three-channel capillary nanofiltration membrane with inner skin layer. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Role of functional nanoparticles to enhance the polymeric membrane performance for mixture gas separation. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.09.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|