1
|
Clarizia G, Bernardo P. Polyether Block Amide as Host Matrix for Nanocomposite Membranes Applied to Different Sensitive Fields. MEMBRANES 2022; 12:1096. [PMID: 36363651 PMCID: PMC9693152 DOI: 10.3390/membranes12111096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/31/2023]
Abstract
The cornerstones of sustainable development require the treatment of wastes or contaminated streams allowing the separation and recycling of useful substances by a more rational use of energy sources. Separation technologies play a prominent role, especially when conducted by inherently environmentally friendly systems such as membrane operations. However, high-performance materials are more and more needed to improve the separative performance of polymeric materials nanocomposites are ideally suited to develop advanced membranes by combining organic polymers with suitable fillers having superior properties. In this area, polyether block amide copolymers (Pebax) are increasingly adopted as host matrices due to their distinctive properties in terms of being lightweight and easy to process, having good resistance to most chemicals, flexibility and high strength. In this light, the present review seeks to provide a comprehensive examination of the progress in the development of Pebax-based nanocomposite films for their application in several sensitive fields, that are challenging and at the same time attractive, including olefin/paraffin separation, pervaporation, water treatment, flexible films for electronics, electromagnetic shielding, antimicrobial surfaces, wound dressing and self-venting packaging. It covers a wide range of materials used as fillers and analyzes the properties of the derived nanocomposites and their performance. The general principles from the choice of the material to the approaches for the heterogeneous phase compatibilization as well as for the performance improvement were also surveyed. From a detailed analysis of the current studies, the most effective strategies to overcome some intrinsic limitations of these nanocomposites are highlighted, providing guidelines for the correlated research.
Collapse
Affiliation(s)
| | - Paola Bernardo
- Institute on Membrane Technology (ITM-CNR), via P. Bucci 17/C, 87036 Rende, CS, Italy
| |
Collapse
|
2
|
Zhan X, Zhao X, Ge R, Gao Z, Wang L, Sun X, Li J. Constructing high-efficiency transport pathways via incorporating DP-POSS into PEG membranes for pervaporative desulfurization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Effect of MoS2 Yolk-Shell Nanostructure on the Thiophene Separation Performance of PEG Membrane. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/5780884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Constructing facilitated transport based on π-complexation has been drawing more and more attention in mixed matrix membranes (MMMs) for pervaporative desulfurization. Herein, a unique molybdenum disulfide (MoS2) yolk-shell nanostructure (MYNS) was prepared and incorporated into the polyethylene glycol (PEG) matrix to fabricate MMMs for model gasoline desulfurization by PV. Moreover, the effects of MYNS content, feed sulfur concentration, and feed temperature on the performance of PEG/MYNS MMMs were evaluated. It was found that there is good interfacial compatibility between the MYNS filler and the PEG matrix, and the resultant MMMs show enhanced swelling resistance against thiophene. The PV results revealed that the as-fabricated MMMs are thiophene-selective, and their desulfurization performance in the pervaporative removal of thiophene from n-octane is remarkably evaluated due to the addition of MYNS. The MMMs display the highest sulfur enrichment factor of 4.02 with an associated permeation flux of 2587 g·m−2·h−1 with the MYNS loading of 3 wt. % when carrying out in an n-octane and thiophene (500 μg·g−1) mixture at 343 K. Furthermore, a consistent increment in the permeation flux accompanied with a continuous reduction in the enrichment factor was observed with increasing the feed sulfur concentration and feed temperature. This work may offer great potential for practical gasoline desulfurization applications.
Collapse
|
4
|
HPW/PAM Catalyst for Oxidative Desulfurization-Synthesis, Characterization and Mechanism Study. Processes (Basel) 2022. [DOI: 10.3390/pr10020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, polyacrylamide (PAM) was first used in the loading of heteropoly acids, and then the HPM/PAM-n catalyst was synthesized by simple reaction. The FTIR and SEM measurements showed that the HPM/PAM-n (n = 10,000, 20,000, 30,000) was successfully synthesized. In addition, the HPM/PAM-n effect on desulfurization was measured, which showed the optimal desulfurization efficiency. The optimal process condition for HPM/PAM-10000 desulfurization was optimized by a single-factor experiment. The optimal condition was as follows: The temperature was 60 °C, the amount of the catalyst was 0.2 g, the oxygen to sulfur ratio was 16, and the reaction time is 100 min. The catalyst was suitable for recycled use, and the desulfurization efficiency was high after 10 times. In the end, the oxidative desulfurization mechanism was put forward.
Collapse
|
5
|
Gui Z, Leng X, Wang M, Hou Y. Surface engineering of a pervaporation desulfurization membrane with crack structures by the self‐condensation of silane coupling agent. J Appl Polym Sci 2021. [DOI: 10.1002/app.52020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhaolong Gui
- Key Laboratory of Oilfield Produced Water Treatment and Environmental Pollution Control in Shandong Province Dongying China
| | - Xiaoyan Leng
- State Key Laboratory of Heavy Oil Processing China University of Petroleum (East China) Qingdao China
| | - Ming Wang
- State Key Laboratory of Heavy Oil Processing China University of Petroleum (East China) Qingdao China
| | - Yingfei Hou
- State Key Laboratory of Heavy Oil Processing China University of Petroleum (East China) Qingdao China
| |
Collapse
|
6
|
Wang H, Wang M, Liang X, Yuan J, Yang H, Wang S, Ren Y, Wu H, Pan F, Jiang Z. Organic molecular sieve membranes for chemical separations. Chem Soc Rev 2021; 50:5468-5516. [PMID: 33687389 DOI: 10.1039/d0cs01347a] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular separations that enable selective transport of target molecules from gas and liquid molecular mixtures, such as CO2 capture, olefin/paraffin separations, and organic solvent nanofiltration, represent the most energy sensitive and significant demands. Membranes are favored for molecular separations owing to the advantages of energy efficiency, simplicity, scalability, and small environmental footprint. A number of emerging microporous organic materials have displayed great potential as building blocks of molecular separation membranes, which not only integrate the rigid, engineered pore structures and desirable stability of inorganic molecular sieve membranes, but also exhibit a high degree of freedom to create chemically rich combinations/sequences. To gain a deep insight into the intrinsic connections and characteristics of these microporous organic material-based membranes, in this review, for the first time, we propose the concept of organic molecular sieve membranes (OMSMs) with a focus on the precise construction of membrane structures and efficient intensification of membrane processes. The platform chemistries, designing principles, and assembly methods for the precise construction of OMSMs are elaborated. Conventional mass transport mechanisms are analyzed based on the interactions between OMSMs and penetrate(s). Particularly, the 'STEM' guidelines of OMSMs are highlighted to guide the precise construction of OMSM structures and efficient intensification of OMSM processes. Emerging mass transport mechanisms are elucidated inspired by the phenomena and principles of the mass transport processes in the biological realm. The representative applications of OMSMs in gas and liquid molecular mixture separations are highlighted. The major challenges and brief perspectives for the fundamental science and practical applications of OMSMs are tentatively identified.
Collapse
Affiliation(s)
- Hongjian Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Meidi Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hao Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4 117585, Singapore
| | - Shaoyu Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China and Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
7
|
Deng J, Dai Z, Deng L. Effects of the Morphology of the ZIF on the CO 2 Separation Performance of MMMs. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01946] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- School of Chemical, Biological and Material Engineering, University of Oklahoma, 73019 Norman, Oklahoma, United States
| | - Zhongde Dai
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- College of Architecture & Environment, Sichuan University, 610065 Chengdu, China
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
8
|
|
9
|
Yang H, Wu H, Pan F, Wang M, Jiang Z, Cheng Q, Huang C. Water-selective hybrid membranes with improved interfacial compatibility from mussel-inspired dopamine-modified alginate and covalent organic frameworks. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
|
11
|
Hybrid membranes with Cu(II) loaded metal organic frameworks for enhanced desulfurization performance. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Pan F, Li W, Zhang Y, Sun J, Wang M, Wu H, Jiang Z, Lin L, Wang B, Cao X, Zhang P. Hollow monocrystalline silicalite-1 hybrid membranes for efficient pervaporative desulfurization. AIChE J 2018. [DOI: 10.1002/aic.16399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Weidong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Ye Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Jie Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Meidi Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
| | - Baoyi Wang
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Xingzhong Cao
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Peng Zhang
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
13
|
Pan F, Wang M, Ding H, Song Y, Li W, Wu H, Jiang Z, Wang B, Cao X. Embedding Ag + @COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Zhan GX, Shen BX, Sun H, Chen X. Extractive Distillation Approach to the Removal of Dimethyl Disulfide from Methyl Tert-Butyl Ether: Combined Computational Solvent Screening and Experimental Process Investigation. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b01766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guo-xiong Zhan
- Petroleum Processing Research Center, and State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ben-xian Shen
- Petroleum Processing Research Center, and State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Sun
- Petroleum Processing Research Center, and State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xi Chen
- Petroleum Processing Research Center, and State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Kardani R, Asghari M, Mohammadi T, Afsari M. Effects of nanofillers on the characteristics and performance of PEBA-based mixed matrix membranes. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Mixed matrix membranes (MMMs) with superior structural and functional properties provide an interesting approach to enhance the separation properties of polymer membranes. As a matter of fact, MMMs combine the advantages of both components; polymeric continuous phase and nanoparticle dispersed phase. Generally, the separation performance of polymeric membranes suffers from an upper-performance limit. Hence, the incorporation of nanoparticles helps to overcome such limitations. Block copolymers such as poly(ether-block-amide) (PEBA) composed of immiscible soft ether segments as well as hard amide segments have been shown as excellent materials for the synthesis of membranes. Consequently, PEBA membranes have been extensively used in scientific research and industrial processes. It is thus aimed to provide an overview of PEBA MMMs. This review is especially devoted to summarizing the effects of nanoparticle loading on PEBA performance and properties such as selectivity, permeability, thermal and mechanical properties, and others. In addition, the preparation techniques of PEBA MMMs and solvent selection are discussed. This article also discusses the many types of nanoparticles incorporated into PEBA membranes. Furthermore, the future direction in PEBA MMMs research for separation processes is briefly predicted.
Collapse
Affiliation(s)
- Rokhsare Kardani
- Separation Processes Research Group, Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
| | - Morteza Asghari
- Separation Processes Research Group, Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
- Energy Research Institute, University of Kashan , Kashan , Iran
| | - Toraj Mohammadi
- Research and Technology Centre for Membrane Processes, Iran University of Science and Technology , Tehran , Iran
| | - Morteza Afsari
- Separation Processes Research Group, Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
| |
Collapse
|
16
|
|
17
|
Huang X, Wu J, Zhu Y, Zhang Y, Feng X, Lu X. Flow-resistance analysis of nano-confined fluids inspired from liquid nano-lubrication: A review. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Cheng X, Pan F, Wang M, Li W, Song Y, Liu G, Yang H, Gao B, Wu H, Jiang Z. Hybrid membranes for pervaporation separations. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.07.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Li W, Pan F, Song Y, Wang M, Wang H, Walker S, Wu H, Jiang Z. Construction of molecule-selective mixed matrix membranes with confined mass transfer structure. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Chen S, Zhou T, Wu H, Wu Y, Jiang Z. Embedding Molecular Amine Functionalized Polydopamine Submicroparticles into Polymeric Membrane for Carbon Capture. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Silu Chen
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Department
of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tiantian Zhou
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hong Wu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yingzhen Wu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongyi Jiang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
21
|
Ding H, Pan F, Mulalic E, Gomaa H, Li W, Yang H, Wu H, Jiang Z, Wang B, Cao X, Zhang P. Enhanced desulfurization performance and stability of Pebax membrane by incorporating Cu+ and Fe2+ ions co-impregnated carbon nitride. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|