1
|
Elma M, Bilad MR, Pratiwi AE, Rahma A, Asyyaifi ZL, Hairullah H, Syauqiah I, Arifin YF, Lestari RA. Long-Term Performance and Stability of Interlayer-Free Mesoporous Silica Membranes for Wetland Saline Water Pervaporation. Polymers (Basel) 2022; 14:polym14050895. [PMID: 35267717 PMCID: PMC8912799 DOI: 10.3390/polym14050895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Wetland water is an alternative water resource around wetland areas. However, it is typically saline due to seawater intrusion and contains high natural organic matter (NOM) that is challenging to treat. This study evaluated the stability of interlayer-free mesoporous silica matrix membranes employing a dual acid–base catalyzed sol–gel process for treatment of saline wetland water. The silica sols were prepared under a low silanol concentration, dip-coated in 4 layers, and calcined using the rapid thermal processing method. The membrane performance was initially evaluated through pervaporation under various temperatures (25–60 °C) using various feeds. Next, the long-term stability (up to 400 h) of wetland saline water desalination was evaluated. Results show that the water flux increased at higher temperatures up to 6.9 and 6.5 kg·m−2·h−1 at the highest temperature of 60 °C for the seawater and the wetland saline water feeds, respectively. The long-term stability demonstrated a stable performance without flux and rejection decline up to 170 h operation, beyond which slow declines in water flux and rejection were observed due to fouling by NOM and membrane wetting. The overall findings suggest that an interlayer-free mesoporous silica membrane offers excellent performance and high salt rejection (80–99%) for wetland saline water treatments.
Collapse
Affiliation(s)
- Muthia Elma
- Chemical Engineering Department, Engineering Faculty, Lambung Mangkurat University, Banjarbaru 70714, Indonesia; (I.S.); (R.A.L.)
- Materials and Membranes Research Group (M2ReG), Lambung Mangkurat University, Banjarbaru 70714, Indonesia; (A.E.P.); (A.R.); (Z.L.A.); (H.H.)
- Correspondence: (M.E.); (M.R.B.)
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Correspondence: (M.E.); (M.R.B.)
| | - Amalia Enggar Pratiwi
- Materials and Membranes Research Group (M2ReG), Lambung Mangkurat University, Banjarbaru 70714, Indonesia; (A.E.P.); (A.R.); (Z.L.A.); (H.H.)
| | - Aulia Rahma
- Materials and Membranes Research Group (M2ReG), Lambung Mangkurat University, Banjarbaru 70714, Indonesia; (A.E.P.); (A.R.); (Z.L.A.); (H.H.)
- Environmental Science Doctoral and Postgraduate Program, Lambung Mangkurat University, Banjarmasin 70123, Indonesia
| | - Zaini Lambri Asyyaifi
- Materials and Membranes Research Group (M2ReG), Lambung Mangkurat University, Banjarbaru 70714, Indonesia; (A.E.P.); (A.R.); (Z.L.A.); (H.H.)
| | - Hairullah Hairullah
- Materials and Membranes Research Group (M2ReG), Lambung Mangkurat University, Banjarbaru 70714, Indonesia; (A.E.P.); (A.R.); (Z.L.A.); (H.H.)
| | - Isna Syauqiah
- Chemical Engineering Department, Engineering Faculty, Lambung Mangkurat University, Banjarbaru 70714, Indonesia; (I.S.); (R.A.L.)
| | - Yulian Firmana Arifin
- Professional Engineer Education Study Program, Lambung Mangkurat University, Banjarbaru 70714, Indonesia;
- Civil Engineering Study Program, Lambung Mangkurat University, Banjarbaru 70714, Indonesia
| | - Riani Ayu Lestari
- Chemical Engineering Department, Engineering Faculty, Lambung Mangkurat University, Banjarbaru 70714, Indonesia; (I.S.); (R.A.L.)
- Materials and Membranes Research Group (M2ReG), Lambung Mangkurat University, Banjarbaru 70714, Indonesia; (A.E.P.); (A.R.); (Z.L.A.); (H.H.)
| |
Collapse
|
2
|
Preparation of Al-Containing ZSM-58 Zeolite Membranes Using Rapid Thermal Processing for CO 2/CH 4 Mixture Separation. MEMBRANES 2021; 11:membranes11080623. [PMID: 34436386 PMCID: PMC8398471 DOI: 10.3390/membranes11080623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/02/2022]
Abstract
The synthesis of DDR-type zeolite membranes faces the problem of cracks that occur on the zeolite membrane due to differences in the thermal expansion coefficient between zeolite and the porous substrate during the detemplating process. In this study, Al-containing ZSM-58 zeolite membranes with DDR topology were prepared by rapid thermal processing (RTP), with the aim of developing a reproducible method for preparing DDR zeolite membrane without cracks. Moreover, we verified the influence of RTP before performing conventional thermal calcination (CTC) on ZSM-58 membranes with various silica-to-aluminum (Si/Al) molar ratios. Using the developed method, an Al-containing ZSM-58 membrane without cracks was obtained, along with complete template removal by RTP, and it had higher CO2/CH4 selectivity. An all-silica ZSM-58 membrane without cracks was obtained by only using the ozone detemplating method. ZSM-58 crystals and membranes with various Si/Al molar ratios were analyzed by using Fourier-transform infrared (FTIR) spectroscopy to confirm the effects of RTP treatment. Al-containing ZSM-58 zeolites had higher silanol concentrations than all-silica zeolites, confirming many silanol condensations by RTP. The condensation of silanol forms results in the formation of siloxane bonds and stronger resistance to thermal stress; therefore, RTP caused crack suppression in Al-containing ZSM-58 membranes. The results demonstrate that Al-containing ZSM-58 zeolite membranes with high CO2 permeance and CO2/CH4 selectivity and minimal cracking can be produced by using RTP.
Collapse
|
3
|
Castro-Muñoz R. Breakthroughs on tailoring pervaporation membranes for water desalination: A review. WATER RESEARCH 2020; 187:116428. [PMID: 33011568 DOI: 10.1016/j.watres.2020.116428] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 05/24/2023]
Abstract
Due to the increase in worldwide population and urbanization, water scarcity is today one of the tough challenges of society. To date, several ongoing initiatives and strategies are aiming to find feasible alternatives to produce drinking water. Seawater desalination is addressed as a latent alternative to solve such an issue. When dealing with desalination, membrane-based technologies (such as reverse osmosis, membrane distillation, pervaporation, among others) have been successfully proposed. Pervaporation (PV) is likely the membrane operation with the less permeation rate but providing high rejection of salts. Thereby, "membranologists" are extensively working in developing new suitable membranes for pervaporation desalination. Therefore, the goal of this review paper is to elucidate and provide a comprehensive outlook of the most recent works (over the last 5-years) at developing new concepts of membranes (e.g. ultra-thin, mixed matrix/composite and inorganic) for desalination, as well as the relevant strategies in fabricating enhanced PV membranes. At this point, an important emphasis has been paid to the relevant insights in the field. This paper also addresses some principles of PV and the main drawbacks of the technique and its membranes. Through reviewing the literature, the future trends, needs, and recommendations for the new researchers are given.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110Toluca de Lerdo, Mexico.
| |
Collapse
|
4
|
Development of Hybrid and Templated Silica-P123 Membranes for Brackish Water Desalination. Polymers (Basel) 2020; 12:polym12112644. [PMID: 33182780 PMCID: PMC7697223 DOI: 10.3390/polym12112644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022] Open
Abstract
Water scarcity is still a pressing issue in many regions. The application of membrane technology through water desalination to convert brackish to potable water is a promising technology to solve this issue. This study compared the performance of templated TEOS-P123 and ES40-P123 hybrid membranes for brackish water desalination. The membranes were prepared by the sol–gel method by employing tetraethyl orthosilicate (TEOS) for the carbon-templated silica (soft template) and ethyl silicate (ES40) for the hybrid organo-silica. Both sols were templated by adding 35 wt.% of pluronic triblock copolymer (P123) as the carbon source. The silica-templated sols were dip-coated onto alumina support (four layers) and were calcined by using the RTP (rapid thermal processing) method. The prepared membranes were tested using pervaporation set up at room temperature (~25 °C) using brackish water (0.3 and 1 wt.%) as the feed. It was found that the hybrid membrane exhibited the highest specific surface area (6.72 m2·g−1), pore size (3.67 nm), and pore volume (0.45 cm3·g−1). The hybrid ES40-P123 was twice thicker (2 μm) than TEOS-P123-templated membranes (1 μm). Lastly, the hybrid ES40-P123 displayed highest water flux of 6.2 kg·m−2·h−1. Both membranes showed excellent robustness and salt rejections of >99%.
Collapse
|
5
|
Fabrication of La/Y-codoped microporous organosilica membranes for high-performance pervaporation desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Innovation of Carbon from Pectin Templated in Fabrication of Interlayer-free Silica-Pectin Membrane. JURNAL KIMIA SAINS DAN APLIKASI 2019. [DOI: 10.14710/jksa.22.3.93-98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water scarcity is the main issues in Indonesia especially for coastal areas. As a consequence, the water has high salinity of >50.000 ppm salt concentration where an appropriate treatment is necessary before consumed. In this case, desalination process could be carried out using inorganic silica membranes. However, during the process the pore of silica membranes were collapsed due to the directly contact of pores to water molecules for a long term performance. Thereby, in this work the innovation of membrane fabrication using carbon templated in silica matrices has been successfully fabricated. Literally, the carbon templates could be improving the membrane hydro-stability. The interlayer-free silica-pectin membrane was fabricated using TEOS as silica precursor and carbon templated from pectin apple. All membranes waere calcined in variance temperature of 300 and 400°C via Rapid Thermal Processing (RTP). The FTIR results show some functionalization of siloxane, silanol and a new bond of silica-carbon. Whereas, the SEM images show the membrane morphology that the membrane not dense and crack-free with thin film's thickness of ~ 1 μm. An excellent condition of interlayer-free silica-pectin membrane was obtained at pectin concentration of 2.5 %wt. (300°C) and 0.5 %wt. (400°C) with highest functionalization of siloxane and silica-carbon bonds. The existence of silica-carbon bonds were capable to enhancing the membrane hydro-stability. In addition, the carbon chains were contributed to form a smaller pores but also robust pore structures. Those fabricated membranes were shown a good promising due to fast and low cost fabrication with high quality to applicate in seawater desalination.
Collapse
|
7
|
Substrate Effect on Carbon/Ceramic Mixed Matrix Membrane Prepared by a Vacuum-Assisted Method for Desalination. Processes (Basel) 2018. [DOI: 10.3390/pr6050047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Yang H, Elma M, Wang DK, Motuzas J, Diniz da Costa JC. Interlayer-free hybrid carbon-silica membranes for processing brackish to brine salt solutions by pervaporation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.09.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|