1
|
Wei M, Zhang Y, Wang Y, Liu X, Li X, Zheng X. Employing Atomic Force Microscopy (AFM) for Microscale Investigation of Interfaces and Interactions in Membrane Fouling Processes: New Perspectives and Prospects. MEMBRANES 2024; 14:35. [PMID: 38392662 PMCID: PMC10890076 DOI: 10.3390/membranes14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Membrane fouling presents a significant challenge in the treatment of wastewater. Several detection methods have been used to interpret membrane fouling processes. Compared with other analysis and detection methods, atomic force microscopy (AFM) is widely used because of its advantages in liquid-phase in situ 3D imaging, ability to measure interactive forces, and mild testing conditions. Although AFM has been widely used in the study of membrane fouling, the current literature has not fully explored its potential. This review aims to uncover and provide a new perspective on the application of AFM technology in future studies on membrane fouling. Initially, a rigorous review was conducted on the morphology, roughness, and interaction forces of AFM in situ characterization of membranes and foulants. Then, the application of AFM in the process of changing membrane fouling factors was reviewed based on its in situ measurement capability, and it was found that changes in ionic conditions, pH, voltage, and even time can cause changes in membrane fouling morphology and forces. Existing membrane fouling models are then discussed, and the role of AFM in predicting and testing these models is presented. Finally, the potential of the improved AFM techniques to be applied in the field of membrane fouling has been underestimated. In this paper, we have fully elucidated the potentials of the improved AFM techniques to be applied in the process of membrane fouling, and we have presented the current challenges and the directions for the future development in an attempt to provide new insights into this field.
Collapse
Affiliation(s)
- Mohan Wei
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yaozhong Zhang
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yifan Wang
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaoping Liu
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
- Yulin Coal Chemical Waste Resource Utilization and Low Carbon Environmental Protection Engineering Technology Research Center, Yulin High-tech Zone Yuheng No. 1 Industrial Sewage Treatment Co., Ltd., Yulin 719000, China
| | - Xiaoliang Li
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
2
|
Darmayanti RF, Muharja M, Widjaja A, Widiastuti N, Rachman RA, Widyanto AR, Halim A, Satrio D, Piluharto B. Performance of modified hollow fiber membrane silver nanoparticles-zeolites Na-Y/PVDF composite used in membrane bioreactor for industrial wastewater treatment. Heliyon 2023; 9:e21350. [PMID: 37885732 PMCID: PMC10598539 DOI: 10.1016/j.heliyon.2023.e21350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Membrane bioreactor (MBR) deteriorates due to fouling on the membrane pores, which can reduce the membrane performance. To reduce membrane fouling, the addition of inorganic filler can enhance the antifouling properties. This study investigates two different membrane preparation by thermally induced phase separation (TIPS) and dip coating methods to modify hollow fiber membrane with Silver Nanoparticles (AgNPs)-Zeolites used in MBR for industrial wastewater treatment. Performance was evaluated by analyzing the flux of water and wastewater, rejection, water content, and antifouling properties. Characterization result represented the synthesized silver nanoparticles had similar diffraction peak with commercial AgNPs, then the micrograph of AgNPs and zeolites addition membrane showed that the inorganic material had an octahedral shape representing zeolite crystal and irregular shape representing AgNPs. The addition of zeolites and AgNPs resulted in satisfying performance, increased flux, rejection, and antifouling properties.
Collapse
Affiliation(s)
- Rizki Fitria Darmayanti
- Department of Agro-industrial Technology, Faculty of Agriculture, Universitas Muhammadiyah Jember, Jalan Karimata 49, Jember, 68121, Indonesia
| | - Maktum Muharja
- Department of Chemical Engineering, Faculty of Engineering, Universitas Jember, Jalan Kalimantan 37, Jember, 68121, Indonesia
| | - Arief Widjaja
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Nurul Widiastuti
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Rahadian Abdul Rachman
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
- Wastewater Treatment Plant, PT. Kawasan Industri Gresik, Gresik, 61121, Indonesia
| | - Alvin Rahmad Widyanto
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Abdul Halim
- Department of Chemical Engineering, Universitas Internasional Semen Indonesia, Gresik, 61122, Indonesia
| | - Dendy Satrio
- Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Bambang Piluharto
- Biomaterial research Group, Department of Chemistry, University of Jember, Jalan Kalimantan 37, Jember, 68121, Indonesia
| |
Collapse
|
3
|
Nasir AM, Goh PS, Abdullah MS, Ng BC, Ismail AF. Adsorptive nanocomposite membranes for heavy metal remediation: Recent progresses and challenges. CHEMOSPHERE 2019; 232:96-112. [PMID: 31152909 DOI: 10.1016/j.chemosphere.2019.05.174] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 05/24/2023]
Abstract
Heavy metal contamination in aqueous system has attracted global attention due to the toxicity and carcinogenicity effects towards living bodies. Among available removal techniques, adsorptive removal by nanosized materials such as metal oxide, metal organic frameworks, zeolite and carbon-based materials has attracted much attention due to the large active surface area, large number of functional groups, high chemical and thermal stability which led to outstanding adsorption performance. However, the usage of nanosized materials is restricted by the difficulty in separating the spent adsorbent from aqueous solution. The shift towards the use of adsorptive composite membrane for heavy metal ions removal has attracted much attention due to the synergistic properties of adsorption and filtration approaches in a same chamber. Thus, this review critically discusses the development of nanoadsorbents and adsorptive nanocomposite membranes for heavy metal removal over the last decade. The adsorption mechanism of heavy metal ions by the advanced nanoadsorbents is also discussed using kinetic and isotherm models. The challenges and future prospect of adsorptive membrane technology for heavy metal removal is presented at the end of this review.
Collapse
Affiliation(s)
- Atikah Mohd Nasir
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Darul Ta'zim, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Darul Ta'zim, Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Darul Ta'zim, Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Darul Ta'zim, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Darul Ta'zim, Malaysia.
| |
Collapse
|
4
|
Peng L, Ni Y, Wei X, Hanyu W, Duoqiang P, Wangsuo W. Removal of U(VI) from aqueous solution using TiO2 modified β-zeolite. RADIOCHIM ACTA 2017. [DOI: 10.1515/ract-2017-2765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
β-Zeolite was synthesized and modified with TiO2. The synthesized materials were characterized and used for removal of U(VI) from aqueous solutions. The influences of pH, contact time and temperature on U(VI) adsorption onto modified β-zeolite by TiO2 were studied by batch technique, and XPS was employed to analysed the experimental data. The dynamic process showed that the adsorption of U(VI) onto TiO2/β-zeolite matched the pseudo-second-order kinetics model, and the adsorption of U(VI) were significantly dependent on pH values. Through simulating the adsorption isotherms by Langmuir, Freundlich and Dubini–Radushkevich (D–R) models, it could be seen, respectively that the adsorption patterns of U(VI) onto TiO2/β-zeolite were mainly controlled by surface complexation, and the adsorption processes were endothermic and spontaneous. The modification of β-zeolite by TiO2 it shows a novel material for the removing of U(VI) from water environment for industrialized application.
Collapse
Affiliation(s)
- Liu Peng
- Radiochemistry and Nuclear Environment Laboratory , Lanzhou University , Lanzhou 730000 , China
- Key Laboratory of Special Function Materials and Structure Design , Ministry of Education , Lanzhou 730000 , China
| | - Yuan Ni
- Radiochemistry and Nuclear Environment Laboratory , Lanzhou University , Lanzhou 730000 , China
- Key Laboratory of Special Function Materials and Structure Design , Ministry of Education , Lanzhou 730000 , China
| | - Xiong Wei
- Radiochemistry and Nuclear Environment Laboratory , Lanzhou University , Lanzhou 730000 , China
- Key Laboratory of Special Function Materials and Structure Design , Ministry of Education , Lanzhou 730000 , China
| | - Wu Hanyu
- Radiochemistry and Nuclear Environment Laboratory , Lanzhou University , Lanzhou 730000 , China
- Key Laboratory of Special Function Materials and Structure Design , Ministry of Education , Lanzhou 730000 , China
| | - Pan Duoqiang
- Radiochemistry and Nuclear Environment Laboratory , Lanzhou University , Lanzhou 730000 , China
- Key Laboratory of Special Function Materials and Structure Design , Ministry of Education , Lanzhou 730000 , China
| | - Wu Wangsuo
- Radiochemistry and Nuclear Environment Laboratory , Lanzhou University , Lanzhou 730000 , China
- Key Laboratory of Special Function Materials and Structure Design , Ministry of Education , Lanzhou 730000 , China
| |
Collapse
|
5
|
Wang B, Dutta PK. Influence of Cross-Linking, Temperature, and Humidity on CO2/N2 Separation Performance of PDMS Coated Zeolite Membranes Grown within a Porous Poly(ether sulfone) Polymer. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Wang
- Department of Chemistry and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Prabir K. Dutta
- Department of Chemistry and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Liu P, Wu H, Yuan N, Liu Y, Pan D, Wu W. Removal of U(VI) from aqueous solution using synthesized β-zeolite and its ethylenediamine derivative. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.03.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Liu P, Yuan N, Xiong W, Wu H, Pan D, Wu W. Removal of Nickel(II) from Aqueous Solutions Using Synthesized β-Zeolite and Its Ethylenediamine Derivative. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Liu
- Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Special Function
Materials and Structure Design, Ministry of Education, Lanzhou 730000, China
| | - Ni Yuan
- Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Special Function
Materials and Structure Design, Ministry of Education, Lanzhou 730000, China
| | - Wei Xiong
- Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Special Function
Materials and Structure Design, Ministry of Education, Lanzhou 730000, China
| | - Hanyu Wu
- Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Special Function
Materials and Structure Design, Ministry of Education, Lanzhou 730000, China
| | - Duoqiang Pan
- Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Special Function
Materials and Structure Design, Ministry of Education, Lanzhou 730000, China
| | - Wangsuo Wu
- Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Special Function
Materials and Structure Design, Ministry of Education, Lanzhou 730000, China
| |
Collapse
|