1
|
Ma L, Hou M, Wang Y, Tong W, Zheng J. Organosiloxane membranes for heavy aromatic oil fractionation. Chem Commun (Camb) 2024; 60:8083-8086. [PMID: 38990518 DOI: 10.1039/d4cc02669a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The industrial separation of hydrocarbons relies on distillation. Organic solvent nanofiltration can provide an energy-efficient alternative. We prepared high performance organosiloxane membranes for fractionation of heavy aromatics. They achieved a high permeance up to 0.13 L m-2 h-1 bar-1, with a rejection rate of 88.7% for hydrocarbons with five aromatic rings.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Min Hou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Yuemei Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Weiyi Tong
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Junlin Zheng
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| |
Collapse
|
2
|
Abounahia N, Shahab AA, Khan MM, Qiblawey H, Zaidi SJ. A Comprehensive Review of Performance of Polyacrylonitrile-Based Membranes for Forward Osmosis Water Separation and Purification Process. MEMBRANES 2023; 13:872. [PMID: 37999358 PMCID: PMC10672921 DOI: 10.3390/membranes13110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
Polyacrylonitrile (PAN), with its unique chemical, electrical, mechanical, and thermal properties, has become a crucial acrylic polymer for the industry. This polymer has been widely used to fabricate ultrafiltration, nanofiltration, and reverse osmosis membranes for water treatment applications. However, it recently started to be used to fabricate thin-film composite (TFC) and fiber-based forward osmosis (FO) membranes at a lab scale. Phase inversion and electrospinning methods were the most utilized techniques to fabricate PAN-based FO membranes. The PAN substrate layer could function as a good support layer to create TFC and fiber membranes with excellent performance under FO process conditions by selecting the proper modification techniques. The various modification techniques used to enhance PAN-based FO performance include interfacial polymerization, layer-by-layer assembly, simple coating, and incorporating nanofillers. Thus, the fabrication and modification techniques of PAN-based porous FO membranes have been highlighted in this work. Also, the performance of these FO membranes was investigated. Finally, perspectives and potential directions for further study on PAN-based FO membranes are presented in light of the developments in this area. This review is expected to aid the scientific community in creating novel effective porous FO polymeric membranes based on PAN polymer for various water and wastewater treatment applications.
Collapse
Affiliation(s)
- Nada Abounahia
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Arqam Azad Shahab
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Maryam Mohammad Khan
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Syed Javaid Zaidi
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
3
|
Liu TY, Jia F, Li Q, Liu L, Gao JY, Li DD, Wang Q, Liu J. Interlocking-interface-enabled thermally deformable liquid metal/polymer membrane with high bonding strength. J Colloid Interface Sci 2023; 631:78-88. [PMID: 36395629 DOI: 10.1016/j.jcis.2022.10.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
HYPOTHESIS The high surface tension of liquid metal (LM) causes interface incompatibility and poor bonding strength with many substrates. Fine adjustment towards the properties of the surface area is sufficient to introduce strong bonding. Hence, we hypothesize that the interlocking structure using hydrophilic polyvinyl alcohol (PVA) as a "bridge" should be helpful for tight interfacial bonding of LM with polymeric substrates, thus achieving high-performance LM/polymer membranes, which have wide applications in the field of soft sensors and robotics. EXPERIMENTS The bulk EGaIn was fabricated into LM nanoparticles (LMNPs@PVA) solution. Then, PVA molecules were "doped" into the surface crosslink of the plasma treated polymer substrate by an interfacial penetrating method. Afterward, the solution was evenly dropped on the surface of the treated substrate to obtain the LMNP/polymer membrane after the water evaporated. Photothermal actuators were fabricated based on the membranes. FINDINGS During the interlocking structure, PVA macromolecules could be doped and trapped onto the top surfaces of various polymer substrates as binding "bridges" between the LMNPs and the matrix materials. The achieved LMNP membrane exhibites satisfactory bonding strength, durability and water-assisted erase-reprint, which can be used as soft photothermal actuators with remote laser control.
Collapse
Affiliation(s)
- Tian-Ying Liu
- Beijing Key Laboratory of Cryo-Biomedical Engineering, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Jia
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qian Li
- Beijing Key Laboratory of Cryo-Biomedical Engineering, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Liu
- Beijing Key Laboratory of Cryo-Biomedical Engineering, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian-Ye Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dong-Dong Li
- Beijing Key Laboratory of Cryo-Biomedical Engineering, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Wang
- Beijing Key Laboratory of Cryo-Biomedical Engineering, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Liu
- Beijing Key Laboratory of Cryo-Biomedical Engineering, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Jia X, Cheng Q, Tang T, Xia M, Zhou F, Wu Y, Cheng P, Xu J, Liu K, Wang D. Facile plasma grafting of zwitterions onto nanofibrous membrane surface for improved antifouling properties and filtration performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Emerging membranes for separation of organic solvent mixtures by pervaporation or vapor permeation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Khashij M, Salmani MH, Dalvand A, Fallahzadeh H, Haghirosadat F, Mokhtari M. Fabrication of ZnO/y-FeOOH nanoparticles embedded on the polyethylene terephthalate membrane: Evaluation of antifouling behavior and COD removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67014-67025. [PMID: 35511330 DOI: 10.1007/s11356-022-18965-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Nanofiltration contributes to the development of advanced treatment of wastewater. An antifouling mixed matrix recycled polyethylene terephthalate (rPET) membrane modified by the hydrophilic ZnO/y-FeOOH nanoparticles (NPs) was fabricated via the electrospinning method. The effect of ZnO/y-FeOOH NPS embedded in rPET as a modifier on the fabrication of nanocomposite membranes was investigated regarding water flux, membrane morphology, permeability, fouling resistance, and COD removal. The surface morphology of the rPET-ZnO/y-FeOOH membrane was evaluated by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), water contact angle (WCA), and porosity and pore structure.Due to the embedding of NPs, the resulting rPET-ZnO/y-FeOOH membrane, with a low WCA of 53.404° angle, conforms significantly improved hydrophilicity and water permeation flux. The FESEM image displayed the distribution of cuboidal and needle-like ZnO and FeOOH NPs on the rPET membrane. The performance of the nanofiltration system related to the removal efficiency of COD was studied. It was deduced that the rPET-ZnO/y-FeOOH membrane had a superior COD removal capability (95.7%) at a pressure of 2 bar. Protein rejection tests were performed on antifouling behavior. The nanocomposite membrane with a high antifouling capability was related to 0.5 wt·% ZnO/y-FeOOH NPs (flux recovery ratio [FRR] = 96.2%, Rr = 90.21%, and Rir = 3.001%). The modification procedure in this study (as a great improving technique) was proposed to fabricate the antifouling nanofiltration membrane.
Collapse
Affiliation(s)
- Maryam Khashij
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hossein Salmani
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Arash Dalvand
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossien Fallahzadeh
- Center for Healthcare Modeling, Department of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Haghirosadat
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehdi Mokhtari
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
7
|
Zhai W, Yu H, Chen H, Li L, Li D, Zhang Y, He T. Stable fouling resistance of polyethylene (PE) separator membrane via oxygen plasma plus zwitterion grafting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Pan Y, Guo Y, Liu J, Zhu H, Chen G, Liu Q, Liu G, Jin W. PDMS with Tunable Side Group Mobility and Its Highly Permeable Membrane for Removal of Aromatic Compounds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Jiangying Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Haipeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Quan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| |
Collapse
|
9
|
Pan Y, Guo Y, Liu J, Zhu H, Chen G, Liu Q, Liu G, Jin W. PDMS with Tunable Side Group Mobility and Its Highly Permeable Membrane for Removal of Aromatic Compounds. Angew Chem Int Ed Engl 2021; 61:e202111810. [PMID: 34854181 DOI: 10.1002/anie.202111810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 11/08/2022]
Abstract
Polydimethylsiloxane (PDMS), as the benchmark of organophilic membrane materials, still faces challenges for removal of aromatic compounds due to the undesirable transport channels. In this work, we propose to reconstruct the PDMS conformation with tunable side group mobility by introducing phenyl as rigid molecular spacer to relieve steric hindrance of large-sized aromatic molecules; meanwhile, polymer segments are loosely stacked to provide additional degrees of freedom as increasing the permeant size. Moreover, the reconstructed PDMS is engineered into the composite membrane with prevention of condensation of aromatic compounds in the substrate pores. The resulting thin-film composite membrane achieved one order of magnitude higher flux (11.8 kg m-2 h-1 ) with an equivalent separation factor (12.3) compared with the state-of-the-art membranes for aromatic removal. The permeant-customized membrane molecular and microstructure designing strategy opens a new avenue to develop membranes for specific separation targets.
Collapse
Affiliation(s)
- Yang Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Jiangying Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Haipeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Quan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| |
Collapse
|
10
|
Oulad F, Zinadini S, Zinatizadeh AA, Derakhshan AA. Influence of diazonium‐induced surface grafting on
PES NF
membrane fouling reduction in algal‐rich water treatment. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fariba Oulad
- Environmental Research Center, Department of Applied Chemistry Razi University Kermanshah Iran
| | - Sirus Zinadini
- Environmental Research Center, Department of Applied Chemistry Razi University Kermanshah Iran
| | - Ali Akbar Zinatizadeh
- Environmental Research Center, Department of Applied Chemistry Razi University Kermanshah Iran
- Department of Environmental Sciences College of Agriculture and Environmental Sciences, University of South Africa Florida South Africa
| | - Ali Ashraf Derakhshan
- Environmental Research Center, Department of Applied Chemistry Razi University Kermanshah Iran
| |
Collapse
|
11
|
Backes CW, Weibel DE. Enhanced glycerol dehydration of pervaporation cross‐linked
PVA
membranes modified by
VUV
/
UV‐C
treatments. J Appl Polym Sci 2021. [DOI: 10.1002/app.50723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Claudio W. Backes
- Chemistry Institute Universidade Federal do Rio Grande do Sul‐UFRGS Porto Alegre Brazil
| | - Daniel E. Weibel
- Chemistry Institute Universidade Federal do Rio Grande do Sul‐UFRGS Porto Alegre Brazil
| |
Collapse
|
12
|
Shen X, Sun X, Liu J, Hang J, Jin L, Shi L. A facile strategy to achieve monodispersity and stability of pigment TiO 2 particles in low viscosity systems. J Colloid Interface Sci 2020; 581:586-594. [PMID: 32814186 DOI: 10.1016/j.jcis.2020.07.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 11/27/2022]
Abstract
Stable dispersion of TiO2 particle is very desirable for its practical applications in various fields. It is a big challenge to stabilize pigment TiO2 with relatively large size (200-300 nm) in low viscosity (~10 cP) systems. In the current work, we introduced a general strategy using a hydrophobic-hydrophilic structure to achieve single-dispersed TiO2 particles with long storage stability in low viscosity systems. The modified TiO2 particles (~250 nm) can be re-dispersed into water/glycol ethers mixture to form single dispersed suspension without any additives. Our study shows that the dispersion can be stable at least 60 days at room temperature and the rheological property is similar to the Newtonian fluids showing an extremely low yield stress at relatively high solid concentration. This work is expected to introduce a new strategy to improve the dispersion stability of the large size nanoparticles in low viscosity systems.
Collapse
Affiliation(s)
- Xiaoyao Shen
- Nano-Science & Technology Center, Shanghai University, Shanghai 200444, PR China; College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xiaoying Sun
- Nano-Science & Technology Center, Shanghai University, Shanghai 200444, PR China; College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Jing Liu
- Nano-Science & Technology Center, Shanghai University, Shanghai 200444, PR China; College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jianzhong Hang
- Nano-Science & Technology Center, Shanghai University, Shanghai 200444, PR China; College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Lujiang Jin
- Nano-Science & Technology Center, Shanghai University, Shanghai 200444, PR China; College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Liyi Shi
- Nano-Science & Technology Center, Shanghai University, Shanghai 200444, PR China; College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
13
|
Compositions Based on PAN Solutions Containing Polydimethylsiloxane Additives: Morphology, Rheology, and Fiber Spinning. Polymers (Basel) 2020; 12:polym12040815. [PMID: 32260347 PMCID: PMC7240589 DOI: 10.3390/polym12040815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 11/20/2022] Open
Abstract
The effect of additives of polydimethylsiloxanes (PDMS) with various molecular weights on the morphology and rheological behavior of polyacrylonitrile (PAN) solutions in dimethyl sulfoxide has been analyzed. It was shown that only partial compatibility of the PDMS with the lowest molecular weight member of the homologous series studied—hexamethyldisiloxane—with PAN solution takes place. All other PDMS samples form emulsions with PAN solutions. The coalescence rate of PDMS drops depends on the viscosity ratio of the disperse phase and the continuous medium, which determines both the duration of dispersion preparation and the conditions for processing emulsions into fibers and films. An anomalous change in viscosity for a series of emulsions with different concentrations of additives, associated with the slippage, was detected. The relaxation properties of emulsions “feel” macro-phase separation. Modeling of the wet spinning process has shown that the morphology of the deposited solution drop reflects the movement of the diffusion front, leading to the gathering droplets in the center of the deposited formulation drop or to their localization in a certain arrangement. It was shown that the emulsion jets upon stretching undergo phase separation.
Collapse
|
14
|
oulad F, Zinadini S, Zinatizadeh AA, Derakhshan AA. Novel (4,4-diaminodiphenyl sulfone coupling modified PES/PES) mixed matrix nanofiltration membranes with high permeability and anti-fouling property. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Development and investigation of novel polyphenylene isophthalamide pervaporation membranes modified with various fullerene derivatives. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Chen G, Zhu H, Hang Y, Liu Q, Liu G, Jin W. Simultaneously enhancing interfacial adhesion and pervaporation separation performance of PDMS/ceramic composite membrane via a facile substrate surface grafting approach. AIChE J 2019. [DOI: 10.1002/aic.16773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Guining Chen
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing China
| | - Haipeng Zhu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing China
| | - Yingting Hang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing China
| | - Quan Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing China
| | - Gongping Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing China
| | - Wanqin Jin
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing China
| |
Collapse
|
17
|
Yi Y, Tu H, Zhou X, Liu R, Wu Y, Li D, Wang Q, Shi X, Deng H. Acrylic acid-grafted pre-plasma nanofibers for efficient removal of oil pollution from aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:165-174. [PMID: 30849571 DOI: 10.1016/j.jhazmat.2019.02.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Oily wastewater is a worldwide problem threatening the environment and humans. High flux and low-energy consumption separation of oil and water is urgently required but still faces great challenges. In this study, nanofibrous membranes with superhydrophilic and underwater superoleophobic surfaces were fabricated by grafting acrylic acid onto plasma-treated electrospun polystyrene/polyacrylonitrile (PS/PAN) membranes. The morphologies, chemical compositions, mechanical and surface properties of the membranes were examined in detail. The water contact angles of the PS/PAN membranes were 137.4°, 130.1°, 119.5°, 88.1° and 80.2°, respectively, which decreased to 76.5°, 47.9°, 34.4°, 0° and 0° after grafting treatment, proving that the modification improved the surface hydrophilicity of the membranes due to the introduction of hydrophilic groups. In addition, a gravity-driven filtration device was utilized to investigate the oil/water separation potential of the membranes. The results indicated that the grafted PS/PAN membranes separated the layered oil/water mixtures with permeate flux up to 57509 L m-2 h-1, while high fluxes of 1390-6460 L m-2 h-1 for the separation of different oil-in-water emulsions. Importantly, the membranes still maintained high flux and efficiency even after several cycles of separation. Therefore, the reusable membranes can be expected to be potential cost-effective materials for oil/water treatment.
Collapse
Affiliation(s)
- Yang Yi
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Hu Tu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xue Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Liu
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Yang Wu
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Dan Li
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50014, United States
| | - Xiaowen Shi
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
18
|
Sandoval-Olvera IG, González-Muñoz P, Palacio L, Hernández A, Ávila-Rodríguez M, Prádanos P. Ultrafiltration membranes modified by PSS deposition and plasma treatment for Cr(VI) removal. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Zhu J, Tsehaye MT, Wang J, Uliana A, Tian M, Yuan S, Li J, Zhang Y, Volodin A, Van der Bruggen B. A rapid deposition of polydopamine coatings induced by iron (III) chloride/hydrogen peroxide for loose nanofiltration. J Colloid Interface Sci 2018; 523:86-97. [DOI: 10.1016/j.jcis.2018.03.072] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
|
20
|
High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.090] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
|
22
|
Preparation of polyamide/polyacrylonitrile composite hollow fiber membrane by synchronous procedure of spinning and interfacial polymerization. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Liu HX, Wang N, Zhao C, Ji S, Li JR. Membrane materials in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures — A review. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Zhou M, Wu YN, Luo P, Lyu J, Mu D, Li A, Li F, Li G. Fabrication of free-standing membranes with tunable pore structures based on the combination of electrospinning and self-assembly of block copolymers. RSC Adv 2017. [DOI: 10.1039/c7ra10585a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Polydopamine could improve interface performance of composite membranes with tunable structures which were developed by combining electrospinning and BCP self-assembly.
Collapse
Affiliation(s)
- Meimei Zhou
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- School of Environmental Science and Engineering
- Chang'an University
- 710054 Xi'an
| | - Yi-nan Wu
- College of Environmental Science & Engineering
- Tongji University
- Shanghai
- China
| | - Pingping Luo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- School of Environmental Science and Engineering
- Chang'an University
- 710054 Xi'an
| | - Jiqiang Lyu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- School of Environmental Science and Engineering
- Chang'an University
- 710054 Xi'an
| | - Dengrui Mu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- School of Environmental Science and Engineering
- Chang'an University
- 710054 Xi'an
| | - Aowen Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- School of Environmental Science and Engineering
- Chang'an University
- 710054 Xi'an
| | - Fengting Li
- College of Environmental Science & Engineering
- Tongji University
- Shanghai
- China
| | - Guangtao Li
- Department of Chemistry
- Key Lab of Organic Optoelectronics & Molecular Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|