1
|
Li Y, Ali ABM, Tapia NEF, Kamolova N, Salahshour S, Sabetvand R. Effect of channel roughness on the particle diffusion and permeability of carbon nanotubes in reverse electrodialysis process applying molecular dynamics simulation. J Mol Graph Model 2025; 134:108899. [PMID: 39492082 DOI: 10.1016/j.jmgm.2024.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Innovative technology and methods are crucial for making pure and refreshing water. Two main methods are present to delete soluble salts from water: membrane processes and thermal processes. A beneficial membrane technique is reverse electrodialysis. This research used molecular dynamics (MD) simulation to investigate how channel roughness affected particle diffusion and permeability in carbon nanotubes (CNTs) via the reverse electrodialysis process. The results indicate that adding roughness in the CNT duct increased the force between the primary fluid and the duct. Using an armchair-edged CNT structure maximized the electric current in the sample. Furthermore, the roughness increased the intensity of force in the channel, which was due to gravity, leading to a decrease in the mobility of fluid particles. Additionally, several broken hydrogen bonds inside the simulation box increased from 116 to 128 in the duct sample with roughness.
Collapse
Affiliation(s)
- Yabing Li
- School of Intelligent Manufacturing, Luohe Food Engineering Vocational University, Luohe, Henan, 462300, China.
| | - Ali B M Ali
- Air Conditioning Engineering Department, College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Nelly Esther Flores Tapia
- Research and Development Directorate, Faculty of Sciences, Food and Biotechnology, Technical University of Ambato, Ambato, Ecuador
| | - Nargiza Kamolova
- Department of Chemistry and Its Teaching Methods, Tashkent State Pedagogical University, Tashkent, Uzbekistan
| | - Soheil Salahshour
- Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey; Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Rozbeh Sabetvand
- Department of Energy Engineering and Physics, Faculty of Condensed Matter Physics, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
2
|
Wu X, Yan L, Zhu X, Liu M. Simulation of a Reverse Electrodialysis-Absorption Refrigeration Integration System for the Efficient Recovery of Low-Grade Waste Heat. MEMBRANES 2024; 15:2. [PMID: 39852243 PMCID: PMC11766999 DOI: 10.3390/membranes15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
The absorption refrigeration system (ARS) stands as a remarkable device that is capable of efficiently harnessing low-grade thermal energy and converting it into cooling capacity. The reverse electrodialysis (RED) system harvests the salinity gradient energy embedded in two solutions of different concentrations into electricity. An innovative RED-ARS integration system is proposed that outputs cooling capacity and electric energy, driven by waste heat. In this study, a comprehensive mathematical simulation model of a RED-ARS integration system was established, and an aqueous lithium bromide solution was selected as the working solution. Based on this model, the authors simulated and analyzed the impact of various factors on system performance, including the heat source temperature (90 °C to 130 °C), concentrated solution concentration (3 mol∙L⁻1 to 9 mol∙L⁻1), dilute solution concentration (0.002 mol∙L⁻1 to 0.5 mol∙L⁻1), condensing temperature of the dilute solution (50 °C to 70 °C), solution temperature (30 °C to 60 °C) and flow rate (0.4 cm∙s⁻1 to 1.3 cm∙s⁻1) in the RED stacks, as well as the number of RED stacks. The findings revealed the maximum output power of 934 W, a coefficient of performance (COP) of 0.75, and overall energy efficiency of 33%.
Collapse
Affiliation(s)
- Xi Wu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Linjing Yan
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaojing Zhu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Mingjun Liu
- Sonyo Refrigeration (Dalian) Co., Ltd., Dalian 116699, China
| |
Collapse
|
3
|
Mujahid M, Umar Farooq M, Wang C, Arkook B, Harb M, Ren LF, Shao J. An Opportunity for Synergizing Desalination by Membrane Distillation Assisted Reverse-Electrodialysis for Water/Energy Recovery. CHEM REC 2024; 24:e202400098. [PMID: 39289830 DOI: 10.1002/tcr.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Indexed: 09/19/2024]
Abstract
Industry, agriculture, and a growing population all have a major impact on the scarcity of clean-water. Desalinating or purifying contaminated water for human use is crucial. The combination of thermal membrane systems can outperform conventional desalination with the help of synergistic management of the water-energy nexus. High energy requirement for desalination is a key challenge for desalination cost and its commercial feasibility. The solution to these problems requires the intermarriage of multidisciplinary approaches such as electrochemistry, chemical, environmental, polymer, and materials science and engineering. The most feasible method for producing high-quality freshwater with a reduced carbon footprint is demanding incorporation of industrial low-grade heat with membrane distillation (MD). More precisely, by using a reverse electrodialysis (RED) setup that is integrated with MD, salinity gradient energy (SGE) may be extracted from highly salinized MD retentate. Integrating MD-RED can significantly increase energy productivity without raising costs. This review provides a comprehensive summary of the prospects, unresolved issues, and developments in this cutting-edge field. In addition, we summarize the distinct physicochemical characteristics of the membranes employed in MD and RED, together with the approaches for integrating them to facilitate effective water recovery and energy conversion from salt gradients and freshwater.
Collapse
Affiliation(s)
- Muhammad Mujahid
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Muhammad Umar Farooq
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bassim Arkook
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Moussab Harb
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
4
|
Zhang H, Xian H. Review of Hybrid Membrane Distillation Systems. MEMBRANES 2024; 14:25. [PMID: 38248715 PMCID: PMC10820896 DOI: 10.3390/membranes14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Membrane distillation (MD) is an attractive separation process that can work with heat sources with low temperature differences and is less sensitive to concentration polarization and membrane fouling than other pressure-driven membrane separation processes, thus allowing it to use low-grade thermal energy, which is helpful to decrease the consumption of energy, treat concentrated solutions, and improve water recovery rate. This paper provides a review of the integration of MD with waste heat and renewable energy, such as solar radiation, salt-gradient solar ponds, and geothermal energy, for desalination. In addition, MD hybrids with pressure-retarded osmosis (PRO), multi-effect distillation (MED), reverse osmosis (RO), crystallization, forward osmosis (FO), and bioreactors to dispose of concentrated solutions are also comprehensively summarized. A critical analysis of the hybrid MD systems will be helpful for the research and development of MD technology and will promote its application. Eventually, a possible research direction for MD is suggested.
Collapse
Affiliation(s)
| | - Haizhen Xian
- School of Power, Energy and Mechanical Engineering, North China Electric Power University, Beijing 102206, China;
| |
Collapse
|
5
|
Karimzadeh M, Khatibi M, Ashrafizadeh SN, Mondal PK. Blue energy generation by the temperature-dependent properties in funnel-shaped soft nanochannels. Phys Chem Chem Phys 2022; 24:20303-20317. [PMID: 35979759 DOI: 10.1039/d2cp01015a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Salinity energy generation (SEG) studies have only been done under isothermal conditions at ambient temperature. The production of salinity energy can be improved under non-isothermal conditions, albeit preserving the energy efficiency. In the current study, the effects of gradients of temperature and concentration on the salinity energy generation process were examined simultaneously. Based on the temperature-dependent properties resulting from both temperature and concentration gradients, a numerical study was carried out to determine the maximum efficiency of salinity energy generation in funnel-shaped soft nanochannels. It was presumed that a dense layer of negative charge, called a polyelectrolyte layer (PEL), is coated on the walls of the nanochannels. Co-current and counter-current modes were used to obtain temperature and concentration gradients. Under steady-state conditions, the Poisson-Nernst-Planck, Stokes-Brinkman, and energy equations were numerically solved using equivalent approaches. The results revealed that by increasing the temperature and concentration ratios in both co-current and counter-current modes of operation, the salinity energy generation increased appreciably. The salinity energy generation increased from 30 to 80 pW upon increasing the temperature ratio from 1 to 8 at a constant concentration ratio of 1000 in counter-current mode. As verified from this analysis, low-grade heat sources (<100 °C) provide considerable energy conversion in PEL grafted nanofluidic confinement when placed between electrolyte solutions of different temperatures.
Collapse
Affiliation(s)
- Mohammad Karimzadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Pranab Kumar Mondal
- Microfluidics and Microscale Transport Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
6
|
Wu X, Yang S, Xu S, Zhang X, Ren Y. Measurement and correlation of the solubility of sodium acetate in eight pure and binary solvents. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Degrade Methyl Orange by a Reverse Electrodialysis Reactor Coupled with Electrochemical Direct Oxidation and Electro-Fenton Processes. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00712-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Zimmermann P, Solberg SBB, Tekinalp Ö, Lamb JJ, Wilhelmsen Ø, Deng L, Burheim OS. Heat to Hydrogen by RED-Reviewing Membranes and Salts for the RED Heat Engine Concept. MEMBRANES 2021; 12:48. [PMID: 35054575 PMCID: PMC8779139 DOI: 10.3390/membranes12010048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
The Reverse electrodialysis heat engine (REDHE) combines a reverse electrodialysis stack for power generation with a thermal regeneration unit to restore the concentration difference of the salt solutions. Current approaches for converting low-temperature waste heat to electricity with REDHE have not yielded conversion efficiencies and profits that would allow for the industrialization of the technology. This review explores the concept of Heat-to-Hydrogen with REDHEs and maps crucial developments toward industrialization. We discuss current advances in membrane development that are vital for the breakthrough of the RED Heat Engine. In addition, the choice of salt is a crucial factor that has not received enough attention in the field. Based on ion properties relevant for both the transport through IEMs and the feasibility for regeneration, we pinpoint the most promising salts for use in REDHE, which we find to be KNO3, LiNO3, LiBr and LiCl. To further validate these results and compare the system performance with different salts, there is a demand for a comprehensive thermodynamic model of the REDHE that considers all its units. Guided by such a model, experimental studies can be designed to utilize the most favorable process conditions (e.g., salt solutions).
Collapse
Affiliation(s)
- Pauline Zimmermann
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; (P.Z.); (S.B.B.S.); (J.J.L.)
| | - Simon Birger Byremo Solberg
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; (P.Z.); (S.B.B.S.); (J.J.L.)
| | - Önder Tekinalp
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; (Ö.T.); (L.D.)
| | - Jacob Joseph Lamb
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; (P.Z.); (S.B.B.S.); (J.J.L.)
| | - Øivind Wilhelmsen
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway;
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; (Ö.T.); (L.D.)
| | - Odne Stokke Burheim
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; (P.Z.); (S.B.B.S.); (J.J.L.)
| |
Collapse
|
9
|
Laucirica G, Toimil-Molares ME, Trautmann C, Marmisollé W, Azzaroni O. Nanofluidic osmotic power generators - advanced nanoporous membranes and nanochannels for blue energy harvesting. Chem Sci 2021; 12:12874-12910. [PMID: 34745520 PMCID: PMC8513907 DOI: 10.1039/d1sc03581a] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 01/10/2023] Open
Abstract
The increase of energy demand added to the concern for environmental pollution linked to energy generation based on the combustion of fossil fuels has motivated the study and development of new sustainable ways for energy harvesting. Among the different alternatives, the opportunity to generate energy by exploiting the osmotic pressure difference between water sources of different salinities has attracted considerable attention. It is well-known that this objective can be accomplished by employing ion-selective dense membranes. However, so far, the current state of this technology has shown limited performance which hinders its real application. In this context, advanced nanostructured membranes (nanoporous membranes) with high ion flux and selectivity enabling the enhancement of the output power are perceived as a promising strategy to overcome the existing barriers in this technology. While the utilization of nanoporous membranes for osmotic power generation is a relatively new field and therefore, its application for large-scale production is still uncertain, there have been major developments at the laboratory scale in recent years that demonstrate its huge potential. In this review, we introduce a comprehensive analysis of the main fundamental concepts behind osmotic energy generation and how the utilization of nanoporous membranes with tailored ion transport can be a key to the development of high-efficiency blue energy harvesting systems. Also, the document discusses experimental issues related to the different ways to fabricate this new generation of membranes and the different experimental set-ups for the energy-conversion measurements. We highlight the importance of optimizing the experimental variables through the detailed analysis of the influence on the energy capability of geometrical features related to the nanoporous membranes, surface charge density, concentration gradient, temperature, building block integration, and others. Finally, we summarize some representative studies in up-scaled membranes and discuss the main challenges and perspectives of this emerging field.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Germany
- Technische Universität Darmstadt, Materialwissenschaft 64287 Darmstadt Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| |
Collapse
|
10
|
Hulme A, Davey C, Tyrrel S, Pidou M, McAdam E. Transitioning from electrodialysis to reverse electrodialysis stack design for energy generation from high concentration salinity gradients. ENERGY CONVERSION AND MANAGEMENT 2021; 244:None. [PMID: 34538999 PMCID: PMC8415203 DOI: 10.1016/j.enconman.2021.114493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/30/2021] [Indexed: 05/12/2023]
Abstract
In this study, stack design for high concentration gradient reverse electrodialysis operating in recycle is addressed. High concentration gradients introduce complex transport phenomena, which are exacerbated when recycling feeds; a strategy employed to improve system level energy efficiency. This unique challenge indicates that membrane properties and spacer thickness requirements may differ considerably from reverse electrodialysis for lower concentration gradients (e.g. seawater/river water), drawing closer parallels to electrodialysis stack design. Consequently, commercially available electrodialysis and reverse electrodialysis stack design was first compared for power generation from high concentration gradients. Higher gross power densities were identified for the reverse electrodialysis stack, due to the use of thinner membranes characterised by a higher permselectivity, which improved current. However, energy efficiency of the electrodialysis stack was twice that recorded for the reverse electrodialysis stack at low current densities, which was attributed to: (i) an increased residence time provided by the larger intermembrane distance, and (ii) reduced exergy losses of the electrodialysis membranes, which provided comparatively lower water permeance. Further in-depth investigation into membrane properties and spacer thickness identified that membranes characterised by an intermediate water permeability and ohmic resistance provided the highest power density and energy efficiency (Neosepta ACS/CMS), while wider intermembrane distances up to 0.3 mm improved energy efficiency. This study confirms that reverse electrodialysis stacks for high concentration gradients in recycle therefore demand design more comparable to electrodialysis stacks to drive energy efficiency, but when selecting membrane properties, the trade-off with permselectivity must also be considered to ensure economic viability.
Collapse
|
11
|
Principles of reverse electrodialysis and development of integrated-based system for power generation and water treatment: a review. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Reverse electrodialysis (RED) is among the evolving membrane-based processes available for energy harvesting by mixing water with different salinities. The chemical potential difference causes the movement of cations and anions in opposite directions that can then be transformed into the electrical current at the electrodes by redox reactions. Although several works have shown the possibilities of achieving high power densities through the RED system, the transformation to the industrial-scale stacks remains a challenge particularly in understanding the correlation between ion-exchange membranes (IEMs) and the operating conditions. This work provides an overview of the RED system including its development and modifications of IEM utilized in the RED system. The effects of modified membranes particularly on the psychochemical properties of the membranes and the effects of numerous operating variables are discussed. The prospects of combining the RED system with other technologies such as reverse osmosis, electrodialysis, membrane distillation, heat engine, microbial fuel cell), and flow battery have been summarized based on open-loop and closed-loop configurations. This review attempts to explain the development and prospect of RED technology for salinity gradient power production and further elucidate the integrated RED system as a promising way to harvest energy while reducing the impact of liquid waste disposal on the environment.
Collapse
|
12
|
Hulme AM, Davey CJ, Tyrrel S, Pidou M, McAdam EJ. Scale-up of reverse electrodialysis for energy generation from high concentration salinity gradients. J Memb Sci 2021; 627:119245. [PMID: 34083864 PMCID: PMC8075804 DOI: 10.1016/j.memsci.2021.119245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Whilst reverse electrodialysis (RED) has been extensively characterised for saline gradient energy from seawater/river water (0.5 M/0.02 M), less is known about RED stack design for high concentration salinity gradients (4 M/0.02 M), important to closed loop applications (e.g. thermal-to-electrical, energy storage). This study therefore focuses on the scale-up of RED stacks for high concentration salinity gradients. Higher velocities were required to attain a maximum Open Circuit Voltage (OCV) for 4 M/0.02 M, which gives a measure of the electrochemical potential of the cell. The experimental OCV was also much below the theoretical OCV, due to the greater boundary layer resistance observed, which is distinct from 0.5 M/0.02 M. However, negative net power density (net produced electrical power divided by total membrane area) was demonstrated with 0.5 M/0.02 M for larger stacks using shorter residence times (three stack sizes tested: 10 × 10cm, 10 × 20cm and 10 × 40cm). In contrast, the highest net power density was observed at the shortest residence time for the 4 M/0.02 M concentration gradient, as the increased ionic flux compensated for the pressure drop. Whilst comparable net power densities were determined for the 10 × 10cm and 10 × 40cm stacks using the 4 M/0.02 M concentration gradient, the osmotic and ionic transport mechanisms are distinct. Increasing cell pair number improved maximum current density. This subsequently increased power density, due to the reduction in boundary layer resistance, and may therefore be used to improve thermodynamic efficiency and power density from RED for high concentrations. Although comparable power densities may be achieved for small and large stacks, large stacks maybe preferred for high concentration salinity gradients due to the comparative benefit in thermodynamic efficiency in single pass. The greater current achieved by large stacks may also be complemented by an increase in cell pair number and current density optimisation to increase power density and reduce exergy losses.
Collapse
Affiliation(s)
- A M Hulme
- Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - C J Davey
- Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - S Tyrrel
- Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - M Pidou
- Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - E J McAdam
- Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK
| |
Collapse
|
13
|
Kakihana Y, Jullok N, Shibuya M, Ikebe Y, Higa M. Comparison of Pressure-Retarded Osmosis Performance between Pilot-Scale Cellulose Triacetate Hollow-fiber and Polyamide Spiral-Wound Membrane Modules. MEMBRANES 2021; 11:membranes11030177. [PMID: 33671075 PMCID: PMC7998957 DOI: 10.3390/membranes11030177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022]
Abstract
Pressure-retarded osmosis (PRO) has recently received attention because of its ability to generate power via an osmotic pressure gradient between two solutions with different salinities: high- and low-salinity water sources. In this study, PRO performance, using the two pilot-scale PRO membrane modules with different configurations—five-inch cellulose triacetate hollow-fiber membrane module (CTA-HF) and eight-inch polyamide spiral-wound membrane modules (PA-SW)—was evaluated by changing the draw solution (DS) concentration, applied hydrostatic pressure difference, and the flow rates of DS and feed solution (FS), to obtain the optimum operating conditions in PRO configuration. The maximum power density per unit membrane area of PA-SW at 0.6 M NaCl was 1.40 W/m2 and 2.03-fold higher than that of CTA-HF, due to the higher water permeability coefficient of PA-SW. In contrast, the maximum power density per unit volume of CTA-SW at 0.6 M NaCl was 4.67 kW/m3 and 6.87-fold higher than that of PA-SW. The value of CTA-HF increased to 13.61 kW/m3 at 1.2 M NaCl and was 12.0-fold higher than that of PA-SW because of the higher packing density of CTA-HF.
Collapse
Affiliation(s)
- Yuriko Kakihana
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; (Y.K.); (M.S.); (Y.I.)
- Blue Energy Center for SGE Technology (BEST), 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Nora Jullok
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Jejawi 02600, Perlis, Malaysia;
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Pusat Pengajian Jejawi 3, Jejawi 02600, Perlis, Malaysia
| | - Masafumi Shibuya
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; (Y.K.); (M.S.); (Y.I.)
| | - Yuki Ikebe
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; (Y.K.); (M.S.); (Y.I.)
| | - Mitsuru Higa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; (Y.K.); (M.S.); (Y.I.)
- Blue Energy Center for SGE Technology (BEST), 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
- Correspondence: ; Tel.: +81-836-85-9203
| |
Collapse
|
14
|
Dayanandan N, Kapoor A, Sivaraman P. Studies on membrane distillation towards mitigating thermal pollution. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01525-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Khatibi M, Sadeghi A, Ashrafizadeh SN. Tripling the reverse electrodialysis power generation in conical nanochannels utilizing soft surfaces. Phys Chem Chem Phys 2021; 23:2211-2221. [PMID: 33439162 DOI: 10.1039/d0cp05974a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We theoretically investigate the feasibility of enhancing the reverse electrodialysis power generation in nanochannels by covering the surface with a polyelectrolyte layer (PEL). Along these lines, two conical nanochannels are considered that differ in the extent of the covering. Each nanochannel connects two large reservoirs filled with KCl electrolytes of different ionic concentrations. Considering the Poisson-Nernst-Planck and Navier-Brinkman equations, finite-element-based numerical simulations are performed under a steady-state. The influences of the PEL properties and the salinity gradient on the reverse electrodialysis characteristics are examined in detail via a thorough parametric study. It is shown that the maximum power generated is an increasing function of the charge density and the thickness of the PEL. This means that the maximum power generated may be theoretically increased to any desired degree by covering the nanochannel surface with a sufficiently dense and thick PEL. Considering a typical PEL with a charge density of 100 mol m-3 and a thickness of 8 nm along with a high-to-low concentration ratio of 1000, we demonstrate that it is possible to extract a power density of 51.5 W m-2, which is nearly three times the maximum achievable value employing bare conical nanochannels at the same salinity gradient.
Collapse
Affiliation(s)
- Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | | | | |
Collapse
|
16
|
Long R, Xia X, Zhao Y, Li S, Liu Z, Liu W. Screening metal-organic frameworks for adsorption-driven osmotic heat engines via grand canonical Monte Carlo simulations and machine learning. iScience 2021; 24:101914. [PMID: 33385115 PMCID: PMC7772570 DOI: 10.1016/j.isci.2020.101914] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022] Open
Abstract
Adsorption-driven osmotic heat engines offer an alternative way for harvesting low-grade waste heat below 80°C. In this study, we performed a high-throughput computational screening based on grand canonical Monte Carlo simulations to identify the high-performance metal-organic frameworks (MOFs) from 1322 computationally ready experimental MOF structures for adsorption-driven osmotic heat engines with LiCl-methanol as the working fluid. Structure-property relationship analysis reveals that MOFs exhibiting high energy efficiency possess large working capacity, pore size and surface area, and moderate adsorption enthalpy comparable to the evaporation enthalpy. Furthermore, machine learning is employed to accelerate the computational screening for satisfied MOFs via the structure properties. The optimal structure properties of the MOFs are further identified via the ensemble-based regression model by optimizing the energy efficiency via the genetic algorithm, which shed light on rationally designing and fabricating MOFs for desired heat-to-electricity conversion.
Collapse
Affiliation(s)
- Rui Long
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaoxiao Xia
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yanan Zhao
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Song Li
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhichun Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wei Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
17
|
Facchinetti I, Cobani E, Brogioli D, La Mantia F, Ruffo R. Thermally Regenerable Redox Flow Battery. CHEMSUSCHEM 2020; 13:5460-5467. [PMID: 32833306 DOI: 10.1002/cssc.202001799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The efficient production of energy from low-temperature heat sources (below 100 °C) would open the doors to the exploitation of a huge amount of heat sources such as solar, geothermal, and industrial waste heat. Thermal regenerable redox-flow batteries (TRBs) are flow batteries that store energy in concentration cells that can be recharged by distillation at temperature <100 °C, exploiting low-temperature heat sources. Using a single membrane cell setup and a suitable redox couple (LiBr/Br2 ), a TRB has been developed that is able to store a maximum volumetric energy of 25.5 Wh dm-3 , which can be delivered at a power density of 8 W m-2 . After discharging 30 % of the volumetric energy, a total heat-to-electrical energy conversion efficiency of 4 % is calculated, the highest value reported so far in harvesting of low-temperature heat.
Collapse
Affiliation(s)
- Irene Facchinetti
- Dipartimento di Scienze dei Materiali, Università degli Studi di Milano Bicocca, Via Cozzi, 55, Milano, 20125, Italy
| | - Elkid Cobani
- Dipartimento di Scienze dei Materiali, Università degli Studi di Milano Bicocca, Via Cozzi, 55, Milano, 20125, Italy
| | - Doriano Brogioli
- Energiespeicher- und Energiewandlersysteme, Universität Bremen, Bibliothekstraße 1, Bremen, 28359, Germany
| | - Fabio La Mantia
- Energiespeicher- und Energiewandlersysteme, Universität Bremen, Bibliothekstraße 1, Bremen, 28359, Germany
| | - Riccardo Ruffo
- Dipartimento di Scienze dei Materiali, Università degli Studi di Milano Bicocca, Via Cozzi, 55, Milano, 20125, Italy
| |
Collapse
|
18
|
Avci AH, Messana DA, Santoro S, Tufa RA, Curcio E, Di Profio G, Fontananova E. Energy Harvesting from Brines by Reverse Electrodialysis Using Nafion Membranes. MEMBRANES 2020; 10:E168. [PMID: 32731421 PMCID: PMC7463554 DOI: 10.3390/membranes10080168] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 11/17/2022]
Abstract
Ion exchange membranes (IEMs) have consolidated applications in energy conversion and storage systems, like fuel cells and battery separators. Moreover, in the perspective to address the global need for non-carbon-based and renewable energies, salinity-gradient power (SGP) harvesting by reverse electrodialysis (RED) is attracting significant interest in recent years. In particular, brine solutions produced in desalination plants can be used as concentrated streams in a SGP-RED stack, providing a smart solution to the problem of brine disposal. Although Nafion is probably the most prominent commercial cation exchange membrane for electrochemical applications, no study has investigated yet its potential in RED. In this work, Nafion 117 and Nafion 115 membranes were tested for NaCl and NaCl + MgCl2 solutions, in order to measure the gross power density extracted under high salinity gradient and to evaluate the effect of Mg2+ (the most abundant divalent cation in natural feeds) on the efficiency in energy conversion. Moreover, performance of commercial CMX (Neosepta) and Fuji-CEM 80050 (Fujifilm) cation exchange membranes, already widely applied for RED applications, were used as a benchmark for Nafion membranes. In addition, complementary characterization (i.e., electrochemical impedance and membrane potential test) was carried out on the membranes with the aim to evaluate the predominance of electrochemical properties in different aqueous solutions. In all tests, Nafion 117 exhibited superior performance when 0.5/4.0 M NaCl fed through 500 µm-thick compartments at a linear velocity 1.5 cm·s-1. However, the gross power density of 1.38 W·m-2 detected in the case of pure NaCl solutions decreased to 1.08 W·m-2 in the presence of magnesium chloride. In particular, the presence of magnesium resulted in a drastic effect on the electrochemical properties of Fuji-CEM-80050, while the impact on other membranes investigated was less severe.
Collapse
Affiliation(s)
- Ahmet H. Avci
- Department of Environmental Engineering, University of Calabria, 87036 Rende (CS), Italy; (A.H.A.); (D.A.M.); (S.S.); (E.C.)
| | - Diego A. Messana
- Department of Environmental Engineering, University of Calabria, 87036 Rende (CS), Italy; (A.H.A.); (D.A.M.); (S.S.); (E.C.)
- Institute on Membrane Technology of the National Research Council (ITM-CNR), at University of Calabria, 87036 Rende (CS), Italy;
| | - Sergio Santoro
- Department of Environmental Engineering, University of Calabria, 87036 Rende (CS), Italy; (A.H.A.); (D.A.M.); (S.S.); (E.C.)
| | - Ramato Ashu Tufa
- Department of Energy Conversion and Storage, Technical University of Denmark, Building 310, 2800 Kgs. Lyngby, Denmark;
| | - Efrem Curcio
- Department of Environmental Engineering, University of Calabria, 87036 Rende (CS), Italy; (A.H.A.); (D.A.M.); (S.S.); (E.C.)
- SELIGENDA Membrane Technologies SrL, 87036 Rende (CS), Italy
| | - Gianluca Di Profio
- Institute on Membrane Technology of the National Research Council (ITM-CNR), at University of Calabria, 87036 Rende (CS), Italy;
- SELIGENDA Membrane Technologies SrL, 87036 Rende (CS), Italy
| | - Enrica Fontananova
- Institute on Membrane Technology of the National Research Council (ITM-CNR), at University of Calabria, 87036 Rende (CS), Italy;
| |
Collapse
|
19
|
Naidu G, Tijing L, Johir M, Shon H, Vigneswaran S. Hybrid membrane distillation: Resource, nutrient and energy recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117832] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Mei Y, Li X, Yao Z, Qing W, Fane AG, Tang CY. Simulation of an energy self-sufficient electrodialysis desalination stack for salt removal efficiency and fresh water recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Giacalone F, Vassallo F, Scargiali F, Tamburini A, Cipollina A, Micale G. The first operating thermolytic reverse electrodialysis heat engine. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Long R, Kuang Z, Liu Z, Liu W. Ionic thermal up-diffusion in nanofluidic salinity-gradient energy harvesting. Natl Sci Rev 2019; 6:1266-1273. [PMID: 34692004 PMCID: PMC8291421 DOI: 10.1093/nsr/nwz106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/18/2019] [Accepted: 07/21/2019] [Indexed: 01/06/2023] Open
Abstract
Advances in nanofabrication and materials science give a boost to the research in nanofluidic energy harvesting. Contrary to previous efforts on isothermal conditions, here a study on asymmetric temperature dependence in nanofluidic power generation is conducted. Results are somewhat counterintuitive. A negative temperature difference can significantly improve the membrane potential due to the impact of ionic thermal up-diffusion that promotes the selectivity and suppresses the ion-concentration polarization, especially at the low-concentration side, which results in dramatically enhanced electric power. A positive temperature difference lowers the membrane potential due to the impact of ionic thermal down-diffusion, although it promotes the diffusion current induced by decreased electrical resistance. Originating from the compromise of the temperature-impacted membrane potential and diffusion current, a positive temperature difference enhances the power at low transmembrane-concentration intensities and hinders the power for high transmembrane-concentration intensities. Based on the system's temperature response, we have proposed a simple and efficient way to fabricate tunable ionic voltage sources and enhance salinity-gradient energy conversion based on small nanoscale biochannels and mimetic nanochannels. These findings reveal the importance of a long-overlooked element—temperature—in nanofluidic energy harvesting and provide insights for the optimization and fabrication of high-performance nanofluidic power devices.
Collapse
Affiliation(s)
- Rui Long
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengfei Kuang
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhichun Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
23
|
Heat to H2: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis. ENERGIES 2019. [DOI: 10.3390/en12183428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work presents an integrated hydrogen production system using reverse electrodialysis (RED) and waste heat, termed Heat to H 2 . The driving potential in RED is a concentration difference over alternating anion and cation exchange membranes, where the electrode potential can be used directly for water splitting at the RED electrodes. Low-grade waste heat is used to restore the concentration difference in RED. In this study we investigate two approaches: one water removal process by evaporation and one salt removal process. Salt is precipitated in the thermally driven salt removal, thus introducing the need for a substantial change in solubility with temperature, which KNO 3 fulfils. Experimental data of ion conductivity of K + and NO 3 − in ion-exchange membranes is obtained. The ion conductivity of KNO 3 in the membranes was compared to NaCl and found to be equal in cation exchange membranes, but significantly lower in anion exchange membranes. The membrane resistance constitutes 98% of the total ohmic resistance using concentrations relevant for the precipitation process, while for the evaporation process, the membrane resistance constitutes over 70% of the total ohmic resistance at 40 ∘ C. The modelled hydrogen production per cross-section area from RED using concentrations relevant for the precipitation process is 0.014 ± 0.009 m 3 h − 1 (1.1 ± 0.7 g h − 1 ) at 40 ∘ C, while with concentrations relevant for evaporation, the hydrogen production per cross-section area was 0.034 ± 0.016 m 3 h − 1 (2.6 ± 1.3 g h − 1 ). The modelled energy needed per cubic meter of hydrogen produced is 55 ± 22 kWh (700 ± 300 kWh kg − 1 ) for the evaporation process and 8.22 ± 0.05 kWh (104.8 ± 0.6 kWh kg − 1 ) for the precipitation process. Using RED together with the precipitation process has similar energy consumption per volume hydrogen produced compared to proton exchange membrane water electrolysis and alkaline water electrolysis, where the energy input to the Heat to H 2 -process comes from low-grade waste heat.
Collapse
|
24
|
Mehdizadeh S, Yasukawa M, Abo T, Kuno M, Noguchi Y, Higa M. The Effect of Feed Solution Temperature on the Power Output Performance of a Pilot-Scale Reverse Electrodialysis (RED) System with Different Intermediate Distance. MEMBRANES 2019; 9:membranes9060073. [PMID: 31216734 PMCID: PMC6630688 DOI: 10.3390/membranes9060073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/01/2022]
Abstract
Membrane-based reverse electrodialysis (RED) can convert the salinity gradient energy between two solutions into electric power without any environmental impact. Regarding the practical application of the RED process using natural seawater and river water, the RED performance depends on the climate (temperature). In this study, we have evaluated the effect of the feed solution temperature on the resulting RED performance using two types of pilot-scale RED stacks consisting of 200 cell pairs having a total effective membrane area of 40 m2 with different intermediate distances (200 µm and 600 µm). The temperature dependence of the resistance of the solution compartment and membrane, open circuit voltage (OCV), maximum gross power output, pumping energy, and subsequent net power output of the system was individually evaluated. Increasing the temperature shows a positive influence on all the factors studied, and interesting linear relationships were obtained in all the cases, which allowed us to provide simple empirical equations to predict the resulting performance. Furthermore, the temperature dependence was strongly affected by the experimental conditions, such as the flow rate and type of stack, especially in the case of the pilot-scale stack.
Collapse
Affiliation(s)
- Soroush Mehdizadeh
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Masahiro Yasukawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
- Blue Energy Center for SGE Technology (BEST), Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Takakazu Abo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Masaya Kuno
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Yuki Noguchi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Mitsuru Higa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
- Blue Energy Center for SGE Technology (BEST), Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| |
Collapse
|
25
|
Brogioli D, La Mantia F. Heat recovery in energy production from low temperature heat sources. AIChE J 2018. [DOI: 10.1002/aic.16496] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Doriano Brogioli
- Universität Bremen, Energiespeicher– und Energiewandlersysteme Bibliothekstraße 1, 28359, Bremen Germany
| | - Fabio La Mantia
- Universität Bremen, Energiespeicher– und Energiewandlersysteme Bibliothekstraße 1, 28359, Bremen Germany
| |
Collapse
|
26
|
Abstract
A performance analysis of a salinity gradient heat engine (SGP-HE) is presented for the conversion of low temperature heat into power via a closed-loop Reverse Electrodialysis (RED) coupled with Multi-Effect Distillation (MED). Mathematical models for the RED and MED systems have been purposely developed in order to investigate the performance of both processes and have been then coupled to analyze the efficiency of the overall integrated system. The influence of the main operating conditions (i.e., solutions concentration and velocity) has been quantified, looking at the power density and conversion efficiency of the RED unit, MED Specific Thermal Consumption (STC) and at the overall system exergy efficiency. Results show how the membrane properties (i.e., electrical resistance, permselectivity, water and salt permeability) dramatically affect the performance of the RED process. In particular, the power density achievable using membranes with optimized features (ideal membranes) can be more than three times higher than that obtained with current reference ion exchange membranes. On the other hand, MED STC is strongly influenced by the available waste heat temperature, feed salinity and recovery ratio to be achieved. Lowest values of STC below 25 kWh/m3 can be reached at 100 °C and 27 effects. Increasing the feed salinity also increases the STC, while an increase in the recovery ratio is beneficial for the thermal efficiency of the system. For the integrated system, a more complex influence of operating parameters has been found, leading to the identification of some favorable operating conditions in which exergy efficiency close to 7% (1.4% thermal) can be achieved for the case of current membranes, and up to almost 31% (6.6% thermal) assuming ideal membrane properties.
Collapse
|
27
|
Tong X, Wang X, Liu S, Gao H, Hao R, Chen Y. Low-Grade Waste Heat Recovery via an Osmotic Heat Engine by Using a Freestanding Graphene Oxide Membrane. ACS OMEGA 2018; 3:15501-15509. [PMID: 31458206 PMCID: PMC6643794 DOI: 10.1021/acsomega.8b02101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/02/2018] [Indexed: 06/10/2023]
Abstract
The osmotic heat engine represents a new and promising technology for the harvesting of low-grade waste heat from various sources. However, the lack of an adequate semipermeable membrane hinders the technology's advancement. In this study, we investigated the application of a freestanding graphene oxide membrane (GOM) for energy generation in an osmotic heat engine. The synthesized GOM has a water permeability coefficient of 4.4 L m-2 h-1 bar-1 (LMH-bar). The internal concentration polarization in the osmosis filtration system can be minimized because no membrane support layer is needed for the freestanding GOM. As a result, high water flux and high power density are obtained. For example, under an applied hydraulic pressure of 6.90 bar, with a 2 M draw solution of ammonium bicarbonate solution, a power density of 20.0 W/m2 is achieved. This study shows that the freestanding GOM is promising for application in the osmotic heat engine. Future research regarding improving the mechanical properties and water stability of the GOM is beneficial for further advancing the technology.
Collapse
Affiliation(s)
- Xin Tong
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xin Wang
- International
Iberian Nanotechnology Laboratory, Av. Mestre Jose Veiga, Braga 4715-330, Portugal
| | - Su Liu
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Haiping Gao
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Runlong Hao
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Yongsheng Chen
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
28
|
Long R, Kuang Z, Liu Z, Liu W. Temperature regulated reverse electrodialysis in charged nanopores. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
29
|
Long R, Kuang Z, Liu Z, Liu W. Reverse electrodialysis in bilayer nanochannels: salinity gradient-driven power generation. Phys Chem Chem Phys 2018; 20:7295-7302. [PMID: 29485149 DOI: 10.1039/c7cp08394g] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To evaluate the possibility of nano-fluidic reverse electrodialysis (RED) for salinity gradient energy harvesting, we consider the behavior of ion transportation in a bilayer cylindrical nanochannel consisting of different sized nanopores connecting two large reservoirs at different NaCl concentrations. Numerical simulations to illustrate the electrokinetic behavior at asymmetric sub-pore length and surface charge density are conducted, the impacts of which on transference number, osmotic current, diffusive voltage, maximum power and maximum power efficiency are systematically investigated. The results reveal that the transference number in Config. I (where high NaCl concentration is applied at the larger nanopore) is always larger than that in the opposite configuration (Config. II). At low concentration ratios, the osmotic current and maximum power have maximum values, while the maximum power efficiency decreases consistently. For Config. II, the ion transportation is impacted by the surface charge density at both sub-nanopores, while for Config. I, it is determined by the surface charge density at the downstream small nanopore. When large surface charge density is applied at the downstream small nanopore in contact with a very low concentration reservoir, there exists an interesting phenomenon: the larger surface charge density at the large nanopore induces a slight performance drop due to the impact of upstream EDL overlap.
Collapse
Affiliation(s)
- Rui Long
- School of Energy and Power Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| | | | | | | |
Collapse
|