1
|
Heo JW, An L, Kim MS, Youn DH, Kim YS. Preparation and characterization of zwitterion-substituted lignin/Nafion composite membranes. Int J Biol Macromol 2023; 253:127421. [PMID: 37838126 DOI: 10.1016/j.ijbiomac.2023.127421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
In this study, a novel zwitterion-substituted lignin (ZL) containing amino and sulfonic acid groups was synthesized, and ZL/Nafion composite membranes were fabricated as proton exchange membranes. Kraft lignin was modified using an aminosilane and 1,3-propanesultone via a continuous grafting reaction to provide zwitterionic moieties. Chemical structural analyses confirmed the successful introduction of the zwitterion moiety into lignin. In particular, the surface charge of ZL is positive in an acidic medium and negative in a basic medium, suggesting that ZL is a zwitterionic material. ZL was incorporated into a Nafion membrane to enhance its ion exchange capacity, thermal stability, and hydrophilicity. The proton conductivity of ZL/Nafion 0.5 %, 151.0 mS/cm, was 55.3 % higher than that of unmodified ML (methanol-soluble lignin)/Nafion 0.5 % (97.2 mS/cm), indicating that the zwitterion moiety of ZL enhances the proton transport ability. In addition, oxidative stability evaluation confirmed that ZL/Nafion 2 % was chemically more durable than pure Nafion. This confirmed that using lignin as a membrane additive yielded positive results in terms of chemical durability and oxidation stability in Nafion. Therefore, ZL is expected to be utilized as a multifunctional additive and exhibits the potential for fuel cell applications.
Collapse
Affiliation(s)
- Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Liangliang An
- Faculty of Chemical and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Min Soo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Duck Hyun Youn
- Department of Chemical Engineering, Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
2
|
Ng WW, Thiam HS, Pang YL, Chong KC, Lai SO. A State-of-Art on the Development of Nafion-Based Membrane for Performance Improvement in Direct Methanol Fuel Cells. MEMBRANES 2022; 12:membranes12050506. [PMID: 35629832 PMCID: PMC9143503 DOI: 10.3390/membranes12050506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022]
Abstract
Nafion, a perfluorosulfonic acid proton exchange membrane (PEM), has been widely used in direct methanol fuel cells (DMFCs) to serve as a proton carrier, methanol barrier, and separator for the anode and cathode. A significant drawback of Nafion in DMFC applications is the high anode-to-cathode methanol fuel permeability that results in over 40% fuel waste. Therefore, the development of a new membrane with lower permeability while retaining the high proton conductivity and other inherent properties of Nafion is greatly desired. In light of these considerations, this paper discusses the research findings on developing Nafion-based membranes for DMFC. Several aspects of the DMFC membrane are also presented, including functional requirements, transport mechanisms, and preparation strategies. More importantly, the effect of the various modification approaches on the performance of the Nafion membrane is highlighted. These include the incorporation of inorganic fillers, carbon nanomaterials, ionic liquids, polymers, or other techniques. The feasibility of these membranes for DMFC applications is discussed critically in terms of transport phenomena-related characteristics such as proton conductivity and methanol permeability. Moreover, the current challenges and future prospects of Nafion-based membranes for DMFC are presented. This paper will serve as a resource for the DMFC research community, with the goal of improving the cost-effectiveness and performance of DMFC membranes.
Collapse
Affiliation(s)
- Wei Wuen Ng
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering & Science, Sungai Long Campus, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia; (W.W.N.); (Y.L.P.); (K.C.C.); (S.O.L.)
| | - Hui San Thiam
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering & Science, Sungai Long Campus, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia; (W.W.N.); (Y.L.P.); (K.C.C.); (S.O.L.)
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Correspondence:
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering & Science, Sungai Long Campus, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia; (W.W.N.); (Y.L.P.); (K.C.C.); (S.O.L.)
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Kok Chung Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering & Science, Sungai Long Campus, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia; (W.W.N.); (Y.L.P.); (K.C.C.); (S.O.L.)
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Soon Onn Lai
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering & Science, Sungai Long Campus, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia; (W.W.N.); (Y.L.P.); (K.C.C.); (S.O.L.)
| |
Collapse
|
3
|
Li Z, Hao X, Cheng G, Huang S, Han D, Xiao M, Wang S, Meng Y. In situ implantation of cross-linked functional POSS blocks in Nafion® for high performance direct methanol fuel cells. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Stenina IA, Yaroslavtsev AB. Ionic Mobility in Ion-Exchange Membranes. MEMBRANES 2021; 11:198. [PMID: 33799886 PMCID: PMC7998860 DOI: 10.3390/membranes11030198] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
Membrane technologies are widely demanded in a number of modern industries. Ion-exchange membranes are one of the most widespread and demanded types of membranes. Their main task is the selective transfer of certain ions and prevention of transfer of other ions or molecules, and the most important characteristics are ionic conductivity and selectivity of transfer processes. Both parameters are determined by ionic and molecular mobility in membranes. To study this mobility, the main techniques used are nuclear magnetic resonance and impedance spectroscopy. In this comprehensive review, mechanisms of transfer processes in various ion-exchange membranes, including homogeneous, heterogeneous, and hybrid ones, are discussed. Correlations of structures of ion-exchange membranes and their hydration with ion transport mechanisms are also reviewed. The features of proton transfer, which plays a decisive role in the membrane used in fuel cells and electrolyzers, are highlighted. These devices largely determine development of hydrogen energy in the modern world. The features of ion transfer in heterogeneous and hybrid membranes with inorganic nanoparticles are also discussed.
Collapse
Affiliation(s)
| | - Andrey B. Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky pr. 31, 119991 Moscow, Russia;
| |
Collapse
|
5
|
Stenina I, Golubenko D, Nikonenko V, Yaroslavtsev A. Selectivity of Transport Processes in Ion-Exchange Membranes: Relationship with the Structure and Methods for Its Improvement. Int J Mol Sci 2020; 21:E5517. [PMID: 32752236 PMCID: PMC7432390 DOI: 10.3390/ijms21155517] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
Nowadays, ion-exchange membranes have numerous applications in water desalination, electrolysis, chemistry, food, health, energy, environment and other fields. All of these applications require high selectivity of ion transfer, i.e., high membrane permselectivity. The transport properties of ion-exchange membranes are determined by their structure, composition and preparation method. For various applications, the selectivity of transfer processes can be characterized by different parameters, for example, by the transport number of counterions (permselectivity in electrodialysis) or by the ratio of ionic conductivity to the permeability of some gases (crossover in fuel cells). However, in most cases there is a correlation: the higher the flux density of the target component through the membrane, the lower the selectivity of the process. This correlation has two aspects: first, it follows from the membrane material properties, often expressed as the trade-off between membrane permeability and permselectivity; and, second, it is due to the concentration polarization phenomenon, which increases with an increase in the applied driving force. In this review, both aspects are considered. Recent research and progress in the membrane selectivity improvement, mainly including a number of approaches as crosslinking, nanoparticle doping, surface modification, and the use of special synthetic methods (e.g., synthesis of grafted membranes or membranes with a fairly rigid three-dimensional matrix) are summarized. These approaches are promising for the ion-exchange membranes synthesis for electrodialysis, alternative energy, and the valuable component extraction from natural or waste-water. Perspectives on future development in this research field are also discussed.
Collapse
Affiliation(s)
- Irina Stenina
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| | - Daniel Golubenko
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| |
Collapse
|
6
|
Parthiban V, Sahu AK. Performance enhancement of direct methanol fuel cells using a methanol barrier boron nitride–Nafion hybrid membrane. NEW J CHEM 2020. [DOI: 10.1039/d0nj00433b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sulfonated hexagonal boron nitride is explored as a potential filler to prepare Nafion hybrid membranes for direct methanol fuel cell (DMFC) applications.
Collapse
Affiliation(s)
- V. Parthiban
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| | - A. K. Sahu
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| |
Collapse
|
7
|
Xue B, Zhou S, Yao J, Wang F, Zheng J, Li S, Zhang S. Novel proton exchange membranes based on sulfonated-phosphonated poly (p-phenylene-co-aryl ether ketone) terpolymers with microblock structures for passive direct methanol fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Ru C, Gu Y, Duan Y, Na H, Zhao C. Nafion based semi-interpenetrating polymer network membranes from a cross-linkable SPAEK and a fluorinated epoxy resin for DMFCs. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Ru C, Gu Y, Duan Y, Zhao C, Na H. Enhancement in proton conductivity and methanol resistance of Nafion membrane induced by blending sulfonated poly(arylene ether ketones) for direct methanol fuel cells. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Li L, Cao B, Sun Y, Yi W, Ni X, Xiao Q. Effect of Filler Treatment on the Release Properties of Coating on Urea Granules. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/03602559.2018.1466164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Lixia Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Research Center of Beijing Municipal Slow and Controlled Release Fertilizers Engineering Technology, Beijing, China
| | - Bing Cao
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Research Center of Beijing Municipal Slow and Controlled Release Fertilizers Engineering Technology, Beijing, China
| | - Yumeng Sun
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Research Center of Beijing Municipal Slow and Controlled Release Fertilizers Engineering Technology, Beijing, China
| | - Wenping Yi
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Research Center of Beijing Municipal Slow and Controlled Release Fertilizers Engineering Technology, Beijing, China
| | - Xiaohui Ni
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Research Center of Beijing Municipal Slow and Controlled Release Fertilizers Engineering Technology, Beijing, China
| | - Qiang Xiao
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Research Center of Beijing Municipal Slow and Controlled Release Fertilizers Engineering Technology, Beijing, China
| |
Collapse
|
11
|
Parthiban V, Panda SK, Sahu AK. Highly fluorescent carbon quantum dots-Nafion as proton selective hybrid membrane for direct methanol fuel cells. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.193] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Sousa-Castillo A, Furini LN, Tiu BDB, Cao PF, Topçu B, Comesaña-Hermo M, Rodríguez-González B, Baaziz W, Ersen O, Advincula RC, Pérez-Lorenzo M, Correa-Duarte MA. Plasmonic Retrofitting of Membrane Materials: Shifting from Self-Regulation to On-Command Control of Fluid Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707598. [PMID: 30003590 DOI: 10.1002/adma.201707598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/21/2018] [Indexed: 05/18/2023]
Abstract
This work calls for a paradigm shift in order to change the operational patterns of self-regulated membranes in response to chemical signals. To this end, the fabrication of a retrofitting material is introduced aimed at developing an innovative generation of porous substrates endowed with symbiotic but fully independent sensing and actuating capabilities. This is accomplished by transferring carefully engineered plasmonic architectures onto commercial microfiltration membranes lacking of such features. The integration of these materials leads to the formation of a coating surface proficient for ultrasensitive detection and "on-command" gating. Both functionalities can be synergistically modulated by the spatial and temporal distribution of an impinging light beam offering an unprecedented control over the membrane performance in terms of permeability. The implementation of these hybrid nanocomposites in conventional polymeric porous materials holds great potential in applications ranging from intelligent fluid management to advanced filtration technologies and controlled release.
Collapse
Affiliation(s)
- Ana Sousa-Castillo
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310, Vigo, Spain
| | - Leonardo N Furini
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310, Vigo, Spain
| | - Brylee David B Tiu
- Department of Bioengineering, University of California Berkeley, Hearst Memorial Mining Building, Berkeley, CA, 94720-1760, USA
| | - Peng-Fei Cao
- Department of Macromolecular Science and Engineering, Case Western Reserve University School of Engineering, Cleveland, OH, 44106, USA
| | - Begüm Topçu
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310, Vigo, Spain
| | - Miguel Comesaña-Hermo
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310, Vigo, Spain
| | - Benito Rodríguez-González
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310, Vigo, Spain
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 67037, Strasbourg Cedex 08, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 67037, Strasbourg Cedex 08, France
| | - Rigoberto C Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University School of Engineering, Cleveland, OH, 44106, USA
| | - Moisés Pérez-Lorenzo
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310, Vigo, Spain
| | - Miguel A Correa-Duarte
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310, Vigo, Spain
| |
Collapse
|
13
|
Guo Y, Jiang Z, Ying W, Chen L, Liu Y, Wang X, Jiang ZJ, Chen B, Peng X. A DNA-Threaded ZIF-8 Membrane with High Proton Conductivity and Low Methanol Permeability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705155. [PMID: 29193330 DOI: 10.1002/adma.201705155] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Natural biomolecules have potential as proton-conducting materials, in which the hydrogen-bond networks can facilitate proton transportation. Herein, a biomolecule/metal-organic framework (MOF) approach to develop hybrid proton-conductive membranes is reported. Single-strand DNA molecules are introduced into DNA@ZIF-8 membranes through a solid-confined conversion process. The DNA-threaded ZIF-8 membrane exhibits high proton conductivity of 3.40 × 10-4 S cm-1 at 25 °C and the highest one ever reported of 0.17 S cm-1 at 75 °C, under 97% relatively humidity, attributed to the formed hydrogen-bond networks between the DNA molecules and the water molecules inside the cavities of the ZIF-8, but very low methanol permeability of 1.25 × 10-8 cm2 s-1 due to the small pore entrance of the DNA@ZIF-8 membranes. The selectivity of the DNA@ZIF-8 membrane is thus significantly higher than that of developed proton-exchange membranes for fuel cells. After assembling the DNA@ZIF-8 hybrid membrane into direct methanol fuel cells, it exhibits a power density of 9.87 mW cm-2 . This is the first MOF-based proton-conductivity membrane used for direct methanol fuel cells, providing bright promise for such hybrid membranes in this application.
Collapse
Affiliation(s)
- Yi Guo
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongqing Jiang
- Department of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, Zhejiang, China
| | - Wen Ying
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liping Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yazhi Liu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaobin Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Banglin Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0698, USA
| | - Xinsheng Peng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
14
|
Evaluation of sulfonated polysulfone/zirconium hydrogen phosphate composite membranes for direct methanol fuel cells. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Research on methanol permeation of proton exchange membranes with incorporating ionic liquids. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1331-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|