1
|
Xin JH, Fan HY, Guo BB, Yang HC, Zhu CY, Zhang C, Xu ZK. Interfacial polymerization at unconventional interfaces: an emerging strategy to tailor thin-film composite membranes. Chem Commun (Camb) 2023; 59:13258-13271. [PMID: 37869905 DOI: 10.1039/d3cc04171a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Interfacial polymerization is a well-known process to synthesize separation layers for thin film composite membranes at an immiscible organic liquid-aqueous liquid interface. The organic-aqueous interface determines the diffusion dynamics of monomers and the chemical environment for polymerization, exerting a critical influence on the formation of polymer thin films. This review summarizes recent advances in tailoring interfacial polymerization using interfaces beyond the conventional alkane-water interface to achieve high-performance separation films with designed structures. Diverse liquid-liquid interfaces are introduced for synthesizing separation films by adding co-solvents into the organic phase and/or the aqueous phase, respectively, or by replacing one of the liquid phases with other solvents. Innovative liquid-gel and liquid-gas interfaces are then summarized for the synthesis of polymer thin films for separation. Novel strategies to form reaction interfaces, such as spray-coating, are also presented and discussed. In addition, we discuss the details of how a physically or chemically patterned substrate affects interfacial polymerization. Finally, the potential of unconventional interfaces in interfacial polymerization is forecast with both challenges and opportunities.
Collapse
Affiliation(s)
- Jia-Hui Xin
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hong-Yu Fan
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Bian-Bian Guo
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Cheng-Ye Zhu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Chao Zhang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Hu J, Harandi HB, Chen Y, Zhang L, Yin H, He T. Anisotropic gypsum scaling of corrugated polyvinylidene fluoride hydrophobic membrane in direct contact membrane distillation. WATER RESEARCH 2023; 244:120513. [PMID: 37651864 DOI: 10.1016/j.watres.2023.120513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/11/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
Membrane distillation (MD) technology has gained a lot of attention for treatment of geothermal brine, high salinity waste streams. However, mineral scaling remains a major challenge when treating complex high-salt brines. The development of surface-patterned superhydrophobic membranes is one of the core strategies to solve this problem. We prepared flat sheet membranes (F-PVDF) and hydrophobic membranes with micron-scale corrugated pattern (C-PVDF) using a phase separation method. Their scaling behavior was systematically evaluated using calcium sulfate solutions and the impact of the feed flow was innovatively investigated. Although C-PVDF shows higher contact angle and lower sliding angle than F-PVDF, the scaling resistance of C-PVDF in the perpendicular flow direction has worst scaling resistance. Although the nucleation barrier of the corrugated membrane is the same at both parallel and perpendicular flow directions based on the traditional thermodynamic nucleation theory, experimental observations show that the C-PVDF has the best scaling resistance in the parallel flow direction. A 3D computational fluid dynamics (CFD) model was used and the hydrodynamic state of the pattern membranes was assessed as a determinant of the scaling resistance. The corrugated membrane with parallel flow mode (flow direction in parallel to the corrugation ridge) induces higher fluid velocity within the channel, which mitigated the deposition of crystals. While in the perpendicular flow mode (flow direction in perpendicular to the corrugation ridge), the solutions confined in the corrugated grooves due to vortex shielding, which aggravates the scaling. These results shed light on the mechanism of scaling resistance of corrugated membranes from a hydrodynamic perspective and reveal the mechanism of anisotropy exhibited by corrugated membranes in MD.
Collapse
Affiliation(s)
- Jiaqi Hu
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hesam Bazargan Harandi
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yecang Chen
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Liwei Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.
| | - Huabing Yin
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Tao He
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Wang Q, Lin W, Chou S, Dai P, Huang X. Patterned membranes for improving hydrodynamic properties and mitigating membrane fouling in water treatment: A review. WATER RESEARCH 2023; 236:119943. [PMID: 37054608 DOI: 10.1016/j.watres.2023.119943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Membrane technologies have been widely applied in water treatment over the past few decades. However, membrane fouling remains a hinderance for the widespread use of membrane processes because it decreases effluent quality and increases operating costs. To mitigate membrane fouling, researchers have been exploring effective anti-fouling strategies. Recently, patterned membranes are gaining attention as a novel non-chemical membrane modification for membrane fouling control. In this paper, we review the research on patterned membranes used in water treatment over the past 20 years. In general, patterned membranes show superior anti-fouling performances, which mainly results from two aspects: hydrodynamic effects and interaction effects. Due to the introduction of diversified topographies onto the membrane surface, patterned membranes yield dramatic improvements on hydrodynamic properties, e.g., shear stress, velocity field and local turbulence, restraining concentration polarization and foulants' deposition on the membrane surface. Besides, the membrane-foulant and foulant-foulant interactions play an important role in the mitigation of membrane fouling. Due to the existence of surface patterns, the hydrodynamic boundary layer is destroyed and the interaction force as well as the contact area between foulants and surface are decreased, which contributes to the fouling suppression. However, there are still some limitations in the research and application of patterned membranes. Future research is suggested to focus on the development of patterned membranes appropriate for different water treatment scenarios, the insights into the interaction forces affected by surface patterns, and the pilot-scale and long-term studies to verify the anti-fouling performances of patterned membranes in practical applications.
Collapse
Affiliation(s)
- Qiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weichen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Shuren Chou
- Beijing OriginWater Membrane Technology Co., Ltd, Beijing 101407, China
| | - Pan Dai
- Beijing OriginWater Membrane Technology Co., Ltd, Beijing 101407, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
5
|
Abdel-Aty AA, Ahmed RM, ElSherbiny IM, Panglisch S, Ulbricht M, Khalil AS. Superior Separation of Industrial Oil-in-Water Emulsions Utilizing Surface Patterned Isotropic PES Membranes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Bai L, Ding A, Li G, Liang H. Application of cellulose nanocrystals in water treatment membranes: A review. CHEMOSPHERE 2022; 308:136426. [PMID: 36113655 DOI: 10.1016/j.chemosphere.2022.136426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Nanomaterials have brought great changes to human society, and development has gradually shifted the focus to environmentally friendly applications. Cellulose nanocrystals (CNCs) are new one-dimensional nanomaterials that exhibit environmental friendliness and ensure the biological safety of water environment. CNCs have excellent physical and chemical properties, such as simple preparation process, nanoscale size, high specific surface area, high mechanical strength, good biocompatibility, high hydrophilicity and antifouling ability. Because of these characteristics, CNCs are widely used in ultrafiltration membranes, nanofiltration membranes and reverse osmosis membranes to solve the problems hindering development of membrane technology, such as insufficient interception and separation efficiency, low mechanical strength and poor antifouling performance. This review summarizes recent developments and uses of CNCs in water treatment membranes and discusses the challenges and development prospects of CNCs materials from the perspectives of ecological safety and human health by comparing them with traditional one-dimensional nanomaterials.
Collapse
Affiliation(s)
- Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Aiming Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
7
|
Fan S, Blevins A, Martinez J, Ding Y. Effects of Co-diluent on the pore structure, patterning fidelity, and properties of membranes fabricated by lithographically templated thermally induced phase separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Shao S, Zeng F, Long L, Zhu X, Peng LE, Wang F, Yang Z, Tang CY. Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12811-12827. [PMID: 36048162 DOI: 10.1021/acs.est.2c04736] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanofiltration (NF) membranes have been widely applied in many important environmental applications, including water softening, surface/groundwater purification, wastewater treatment, and water reuse. In recent years, a new class of piperazine (PIP)-based NF membranes featuring a crumpled polyamide layer has received considerable attention because of their great potential for achieving dramatic improvements in membrane separation performance. Since the report of novel crumpled Turing structures that exhibited an order of magnitude enhancement in water permeance ( Science 2018, 360 (6388), 518-521), the number of published research papers on this emerging topic has grown exponentially to approximately 200. In this critical review, we provide a systematic framework to classify the crumpled NF morphologies. The fundamental mechanisms and fabrication methods involved in the formation of these crumpled morphologies are summarized. We then discuss the transport of water and solutes in crumpled NF membranes and how these transport phenomena could simultaneously improve membrane water permeance, selectivity, and antifouling performance. The environmental applications of these emerging NF membranes are highlighted, and future research opportunities/needs are identified. The fundamental insights in this review provide critical guidance on the further development of high-performance NF membranes tailored for a wide range of environmental applications.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Fanxi Zeng
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Fei Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| |
Collapse
|
9
|
Shang C, Xia J, Sun L, Lipscomb GG, Zhang S. Concentration polarization on surface patterned membranes. AIChE J 2022. [DOI: 10.1002/aic.17832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chuning Shang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore Singapore
| | - Jianzhong Xia
- Institute for Advanced Study Shenzhen University Shenzhen China
| | - Lili Sun
- Department of Chemical Engineering The University of Toledo Toledo Ohio USA
| | - G. Glenn Lipscomb
- Department of Chemical Engineering The University of Toledo Toledo Ohio USA
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore Singapore
| |
Collapse
|
10
|
Shang W, Yang S, Liu W, Wong PW, Wang R, Li X, Sheng G, Lau W, An AK, Sun F. Understanding the influence of hydraulic conditions on colloidal fouling development by using the micro-patterned nanofiltration membrane: Experiments and numerical simulation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
|
12
|
Mazinani S, Al-Shimmery A, Chew YJ, Mattia D. 3D printed nanofiltration composite membranes with reduced concentration polarisation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Ismail MF, Islam MA, Khorshidi B, Tehrani-Bagha A, Sadrzadeh M. Surface characterization of thin-film composite membranes using contact angle technique: Review of quantification strategies and applications. Adv Colloid Interface Sci 2022; 299:102524. [PMID: 34620491 DOI: 10.1016/j.cis.2021.102524] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/08/2023]
Abstract
Thin-film composite (TFC) membranes are the most widely used membranes for low-cost and energy-efficient water desalination processes. Proper control over the three influential surface parameters, namely wettability, roughness, and surface charge, is vital in optimizing the TFC membrane surface and permeation properties. More specifically, the surface properties of TFC membranes are often tailored by incorporating novel special wettability materials to increase hydrophilicity and tune surface physicochemical heterogeneity. These essential parameters affect the membrane permeability and antifouling properties. The membrane surface characterization protocols employed to date are rather controversial, and there is no general agreement about the metrics used to evaluate the surface hydrophilicity and physicochemical heterogeneity. In this review, we surveyed and critically evaluated the process that emerged for understanding the membrane surface properties using the simple and economical contact angle analysis technique. Contact angle analysis allows the estimation of surface wettability, surface free energy, surface charge, oleophobicity, contact angle hysteresis, and free energy of interaction; all coordinatively influence the membrane permeation and fouling properties. This review will provide insights into simplifying the evaluation of membrane properties by contact angle analysis that will ultimately expedite the membrane development process by reducing the time and expenses required for the characterization to confirm the success and the impact of any modification.
Collapse
|
14
|
Ward LM, Fickling BG, Weinman ST. Effect of Nanopatterning on Concentration Polarization during Nanofiltration. MEMBRANES 2021; 11:961. [PMID: 34940462 PMCID: PMC8707940 DOI: 10.3390/membranes11120961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Membranes used for desalination still face challenges during operation. One of these challenges is the buildup of salt ions at the membrane surface. This is known as concentration polarization, and it has a negative effect on membrane water permeance and salt rejection. In an attempt to decrease concentration polarization, a line-and-groove nanopattern was applied to a nanofiltration (NF) membrane. Aqueous sodium sulfate (Na2SO4) solutions were used to test the rejection and permeance of both pristine and patterned membranes. It was found that the nanopatterns did not reduce but increased the concentration polarization at the membrane surface. Based on these studies, different pattern shapes and sizes should be investigated to gain a fundamental understanding of the influence of pattern size and shape on concentration polarization.
Collapse
Affiliation(s)
| | | | - Steven T. Weinman
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA; (L.M.W.); (B.G.F.)
| |
Collapse
|
15
|
Fabrication and Characterization of Sulfonated Graphene Oxide (SGO) Doped PVDF Nanocomposite Membranes with Improved Anti-Biofouling Performance. MEMBRANES 2021; 11:membranes11100749. [PMID: 34677515 PMCID: PMC8540047 DOI: 10.3390/membranes11100749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
Emergence of membrane technology for effective performance is qualified due to its low energy consumption, no use of chemicals, high removal capacity and easy accessibility of membrane material. The hydrophobic nature of polymeric membranes limits their applications due to biofouling (assemblage of microorganisms on surface of membrane). Polymeric nanocomposite membranes emerge to alleviate this issue. The current research work was concerned with the fabrication of sulfonated graphene oxide doped polyvinylidene fluoride (PVDF) membrane and investigation of its anti-biofouling and anti-bacterial behavior. The membrane was fabricated through phase inversion method, and its structure and morphology were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-rays diffraction (XRD) and thermo gravimetric analysis (TGA) techniques. Performance of the membrane was evaluated via pure water flux; anti-biofouling behavior was determined through Bovine Serum albumin (BSA) rejection. Our results revealed that the highest water flux was shown by M7 membrane about 308.7 Lm−2h−1/bar having (0.5%) concentration of SGO with improved BSA rejection. Furthermore, these fabricated membranes showed high antibacterial activity, more hydrophilicity and mechanical strength as compared to pristine PVDF membranes. It was concluded that SGO addition within PVDF polymer matrix enhanced the properties and performance of membranes. Therefore, SGO was found to be a promising material for the fabrication of nanocomposite membranes.
Collapse
|
16
|
Malakian A, Husson SM. Evaluating Protein Fouling on Membranes Patterned by Woven Mesh Fabrics. MEMBRANES 2021; 11:730. [PMID: 34677496 PMCID: PMC8538970 DOI: 10.3390/membranes11100730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022]
Abstract
Membrane surface patterning is one approach used to mitigate fouling. This study used a combination of flux decline measurements and visualization experiments to evaluate the effectiveness of a microscale herringbone pattern for reducing protein fouling on polyvinylidene fluoride (PVDF) ultrafiltration membranes. Thermal embossing with woven mesh stamps was used for the first time to pattern membranes. Embossing process parameters were studied to identify conditions replicating the mesh patterns with high fidelity and to determine their effect on membrane permeability. Permeability increased or remained constant when patterning at low pressure (≤4.4 MPa) as a result of increased effective surface area; whereas permeability decreased at higher pressures due to surface pore-sealing of the membrane active layer upon compression. Flux decline measurements with dilute protein solutions showed monotonic decreases over time, with lower rates for patterned membranes than as-received membranes. These data were analyzed by the Hermia model to follow the transient nature of fouling. Confocal laser scanning microscopy (CLSM) provided complementary, quantitative, spatiotemporal information about protein deposition on as-received and patterned membrane surfaces. CLSM provided a greater level of detail for the early (pre-monolayer) stage of fouling than could be deduced from flux decline measurements. Images show that the protein immediately started to accumulate rapidly on the membranes, likely due to favorable hydrophobic interactions between the PVDF and protein, followed by decreasing rates of fouling with time as protein accumulated on the membrane surface. The knowledge generated in this study can be used to design membranes that inhibit fouling or otherwise direct foulants to deposit selectively in regions that minimize loss of flux.
Collapse
Affiliation(s)
| | - Scott M. Husson
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
17
|
Denizer D, ElSherbiny IMA, Ulbricht M, Panglisch S. Studying Fluid Characteristics Atop Surface Patterned Membranes via Particle Image Velocimetry. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Didem Denizer
- University of Duisburg-Essen Chair for Mechanical Process Engineering and Water Technology Lotharstraße 1 47057 Duisburg Germany
- University of Duisburg-Essen Chair for Technical Chemistry II Universitätsstraße 7 45141 Essen Germany
| | - Ibrahim M. A. ElSherbiny
- University of Duisburg-Essen Chair for Mechanical Process Engineering and Water Technology Lotharstraße 1 47057 Duisburg Germany
| | - Mathias Ulbricht
- University of Duisburg-Essen Chair for Technical Chemistry II Universitätsstraße 7 45141 Essen Germany
- Center for Water and Environmental Research (ZWU) Universitätsstraße 2 45141 Essen Germany
- DGMT German Society of Membrane Technology Geschäftsstelle ZWU Universitätsstraße 2 45141 Essen Germany
| | - Stefan Panglisch
- University of Duisburg-Essen Chair for Mechanical Process Engineering and Water Technology Lotharstraße 1 47057 Duisburg Germany
- Center for Water and Environmental Research (ZWU) Universitätsstraße 2 45141 Essen Germany
- DGMT German Society of Membrane Technology Geschäftsstelle ZWU Universitätsstraße 2 45141 Essen Germany
- IWW Water Center Moritzstraße 26 45476 Mülheim an der Ruhr Germany
| |
Collapse
|
18
|
Dobosz KM, Kuo-Leblanc CA, Bowden JW, Schiffman JD. Robust, small diameter hydrophilic nanofibers improve the flux of ultrafiltration membranes. Ind Eng Chem Res 2021; 60:9179-9188. [PMID: 34602741 DOI: 10.1021/acs.iecr.1c01332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we systematically investigated the flux performance of ultrafiltration (UF) membranes functionalized with randomly-accumulated nanofibers. By electrospinning nanofibers from hydrophobic polysulfone (PSf) and hydrophilic cellulose (CL), we were able to explore the role that bulk nanofiber (NF) layer thickness, individual NF diameter, and intrinsic chemistry have on composite membrane flux. Additional parameters that we systematically tested include the molecular weight cut-off (MWCO) of the base membrane (10, 100, and 200 kDa), flow orientation (cross-flow versus dead-end), and the feed solution (hydrophilic water versus hydrophobic oil). Structurally, the crosslinked PSf nanofibers were more robust than the CL nanofibers, which lead to the PSfNF-UF membranes having a greater flux performance. To decouple the structural robustness from the water affinity of the fibers, we chemically modified the PSf fibers to be hydrophilic and indeed, the flux of these new composite membranes featuring hydrophilic crosslinked nanofibers were superior. In summary, the greatest increase in flux performance arises from the smallest diameter, hydrophilic nanofibers that are mechanically robust (crosslinked). We have demonstrated that electrospun nanofiber layers improve the flux performance of ultrafiltration membranes.
Collapse
Affiliation(s)
- Kerianne M Dobosz
- Department of Chemical Engineering University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Christopher A Kuo-Leblanc
- Department of Chemical Engineering University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jared W Bowden
- Department of Chemical Engineering University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
19
|
Ilyas A, Mertens M, Oyaert S, Vankelecom IF. Anti-fouling behavior of micro-patterned PVDF membranes prepared via spray-assisted phase inversion: Influence of pattern shapes and flow configuration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Shang W, Li X, Liu W, Yue S, Li M, von Eiff D, Sun F, An AK. Effective suppression of concentration polarization by nanofiltration membrane surface pattern manipulation: Numerical modeling based on LIF visualization. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Polyethylene-supported nanofiltration membrane with in situ formed surface patterns of millimeter size in resisting fouling. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Patterning flat-sheet Poly(vinylidene fluoride) membrane using templated thermally induced phase separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Shang C, Wang L, Xia J, Zhang S. Macropatterning of Microcrumpled Nanofiltration Membranes by Spacer Imprinting for Low-Scaling Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15527-15533. [PMID: 33166125 DOI: 10.1021/acs.est.0c05779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface patterns provide a chemical-free approach to reduce fouling by mimicking nature and are yet limited by their complicated fabrication procedures. Here, we report readily scalable methods to create sub-micrometer- and millimeter-scale patterns on membrane surfaces for low-scaling desalination, with a focus on the antiscaling mechanism. Specifically, a robust polyethylene (PE) lithium battery separator prepared from melt casting and stretching has been used as the support for nanofiltration (NF), giving micrometer-scale crumples on the surface. Then, the PENF membrane is imprinted by a permeate spacer during tests, leading to millimeter-scale patterns. Two types of experiments are designed to give insights into the impact of surface structure on scaling in NF processes, including (1) comparisons of smooth surfaces and surfaces with nanometer-, micrometer-, and millimeter-scale features and (2) no-stirring dead-end tests and crossflow tests. It has been found that micrometer-scale patterns are resistant to scaling through both spatial and hydrodynamic effects, and millimeter-scale patterns are also effective in reducing scaling solely due to hydrodynamic effects. Computational fluid dynamics (CFD) simulation gives further explanations. In addition, organic and microbial fouling has been studied to give implications for future membrane engineering.
Collapse
Affiliation(s)
- Chuning Shang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Li Wang
- Beijing OriginWater Technology Co., Ltd., Beijing 101407, China
| | - Jianzhong Xia
- Beijing OriginWater Technology Co., Ltd., Beijing 101407, China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| |
Collapse
|
24
|
Ulbricht M. Design and synthesis of organic polymers for molecular separation membranes. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Marbelia L, Ilyas A, Dierick M, Qian J, Achille C, Ameloot R, Vankelecom IF. Preparation of patterned flat-sheet membranes using a modified phase inversion process and advanced casting knife construction techniques. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117761] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Malakian A, Husson SM. Understanding the roles of patterning and foulant chemistry on nanofiltration threshold flux. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Asad A, Rastgar M, Nazaripoor H, Sadrzadeh M, Sameoto D. Durability and Recoverability of Soft Lithographically Patterned Hydrogel Molds for the Formation of Phase Separation Membranes. MICROMACHINES 2020; 11:E108. [PMID: 31963872 PMCID: PMC7019999 DOI: 10.3390/mi11010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/17/2022]
Abstract
Hydrogel-facilitated phase separation (HFPS) has recently been applied to make microstructured porous membranes by modified phase separation processes. In HFPS, a soft lithographically patterned hydrogel mold is used as a water content source that initiates the phase separation process in membrane fabrication. However, after each membrane casting, the hydrogel content changes due to the diffusion of organic solvent into the hydrogel from the original membrane solution. The absorption of solvent into the hydrogel mold limits the continuous use of the mold in repeated membrane casts. In this study, we investigated a simple treatment process for hydrogel mold recovery, consisting of warm and cold treatment steps to provide solvent extraction without changing the hydrogel mold integrity. The best recovery result was 96%, which was obtained by placing the hydrogel in a warm water bath (50 °C) for 10 min followed by immersing in a cold bath (23 °C) for 4 min and finally 4 min drying in air. This recovery was attributed to nearly complete solvent extraction without any deformation of the hydrogel structure. The reusability of hydrogel can assist in the development of a continuous membrane fabrication process using HFPS.
Collapse
Affiliation(s)
- Asad Asad
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (M.R.); (H.N.); (M.S.); (D.S.)
| | | | | | | | | |
Collapse
|
29
|
Fine-tuning of the surface porosity of micropatterned polyethersulfone membranes prepared by phase separation micromolding. Polym J 2019. [DOI: 10.1038/s41428-019-0298-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Yang Z, Guo H, Tang CY. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117297] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Barambu NU, Bilad MR, Wibisono Y, Jaafar J, Mahlia TMI, Khan AL. Membrane Surface Patterning as a Fouling Mitigation Strategy in Liquid Filtration: A Review. Polymers (Basel) 2019; 11:polym11101687. [PMID: 31618963 PMCID: PMC6835855 DOI: 10.3390/polym11101687] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 11/16/2022] Open
Abstract
Membrane fouling is seen as the main culprit that hinders the widespread of membrane application in liquid-based filtration. Therefore, fouling management is key for the successful implementation of membrane processes, and it is done across all magnitudes. For optimum operation, membrane developments and surface modifications have largely been reported, including membrane surface patterning. Membrane surface patterning involves structural modification of the membrane surface to induce secondary flow due to eddies, which mitigate foulant agglomeration and increase the effective surface area for improved permeance and antifouling properties. This paper reviews surface patterning approaches used for fouling mitigation in water and wastewater treatments. The focus is given on the pattern formation methods and their effect on overall process performances.
Collapse
Affiliation(s)
- Nafiu Umar Barambu
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Perak 32610, Malaysia.
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Perak 32610, Malaysia.
| | - Yusuf Wibisono
- Bioprocess Engineering Program, Faculty of Agricultural Technology, Universitas Brawijaya, Malang 65141, Indonesia.
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia.
| | - Teuku Meurah Indra Mahlia
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore 54000, Pakistan.
| |
Collapse
|
32
|
Lau WJ, Lai GS, Li J, Gray S, Hu Y, Misdan N, Goh PS, Matsuura T, Azelee IW, Ismail AF. Development of microporous substrates of polyamide thin film composite membranes for pressure-driven and osmotically-driven membrane processes: A review. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Influence of Surface Micro-Patterning and Hydrogel Coating on Colloidal Silica Fouling of Polyamide Thin-Film Composite Membranes. MEMBRANES 2019; 9:membranes9060067. [PMID: 31167422 PMCID: PMC6630248 DOI: 10.3390/membranes9060067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 11/23/2022]
Abstract
In this work, colloidal fouling by silica particles of different sizes on micro-patterned pristine and poly-(N-isopropylacylamide)-coated polyamide (PA) thin-film composite (TFC) membranes was studied. The competing impacts of surface micro-patterning vs. surface chemical modification on enhancing antifouling propensity in unstirred dead-end filtration conditions were systematically explored. Spatially selective deposition of silica microparticles (500 nm), driven by unequal flow distribution, was observed on micro-patterned membranes such that silica particles accumulated preferentially within the surface pattern’s valleys, while keeping apexes regions not fouled. This interesting phenomenon may explain the substantially enhanced antifouling propensity of micro-patterned PA TFC membranes. A detailed mechanism for spatially selective deposition of silica microparticles is proposed. Furthermore, micro-imprinted surface patterns were revealed to influence deposition behavior/packing of silica nanoparticles (50 nm) resulting in very limited flux decline that was, almost, recovered under influence of triggering stirring stimulus during a continued silica filtration experiment. The current findings provide more insights into the potency of surface micro-patterning consolidated with hydrogel coating toward new fouling-resistant PA TFC membranes.
Collapse
|
34
|
Xiao Z, Zheng R, Liu Y, He H, Yuan X, Ji Y, Li D, Yin H, Zhang Y, Li XM, He T. Slippery for scaling resistance in membrane distillation: A novel porous micropillared superhydrophobic surface. WATER RESEARCH 2019; 155:152-161. [PMID: 30844676 DOI: 10.1016/j.watres.2019.01.036] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 05/26/2023]
Abstract
Scaling in membrane distillation (MD) is a key issue in desalination of concentrated saline water, where the interface property between the membrane and the feed become critical. In this paper, a slippery mechanism was explored as an innovative concept to understand the scaling behavior in membrane distillation for a soluble salt, NaCl. The investigation was based on a novel design of a superhydrophobic polyvinylidene fluoride (PVDF) membrane with micro-pillar arrays (MP-PVDF) using a micromolding phase separation (μPS) method. The membrane showed a contact angle of 166.0 ± 2.3° and the sliding angle of 15.8 ± 3.3°. After CF4 plasma treatment, the resultant membrane (CF4-MP-PVDF) showed a reduced sliding angle of 3.0°. In direct contact membrane distillation (DCMD), the CF4-MP-PVDF membrane illustrated excellent anti-scaling in concentrating saturated NaCl feed. Characterization of the used membranes showed that aggregation of NaCl crystals occurred on the control PVDF and MP-PVDF membranes, but not on the CF4-MP-PVDF membrane. To understand this phenomenon, a "slippery" theory was introduced and correlated the sliding angle to the slippery surface of CF4-MP-PVDF and its anti-scaling property. This work proposed a well-defined physical and theoretical platform for investigating scaling problems in membrane distillation and beyond.
Collapse
Affiliation(s)
- Zechun Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjie Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hailong He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaofei Yuan
- School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Yunhui Ji
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Department of Materials Science & Engineering, Nanjing University, Jiangsu, 210093, China
| | - Dongdong Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Yuebiao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xue-Mei Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Tao He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| |
Collapse
|
35
|
Otitoju T, Saari R, Ahmad A. Progress in the modification of reverse osmosis (RO) membranes for enhanced performance. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
He X, Wang T, Li Y, Chen J, Li J. Fabrication and characterization of micro-patterned PDMS composite membranes for enhanced ethanol recovery. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Heinz O, Aghajani M, Greenberg AR, Ding Y. Surface-patterning of polymeric membranes: fabrication and performance. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Aghajani M, Wang M, Cox LM, Killgore JP, Greenberg AR, Ding Y. Influence of support-layer deformation on the intrinsic resistance of thin film composite membranes. J Memb Sci 2018; 567:10.1016/j.memsci.2018.09.031. [PMID: 30983687 PMCID: PMC6459622 DOI: 10.1016/j.memsci.2018.09.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It is commonly believed that the overall permeation resistance of thin film composite (TFC) membranes is dictated by the crosslinked, ultrathin polyamide barrier layer, while the porous support merely serves as the mechanical support. Although this assumption might be the case under low transmembrane pressure, it becomes questionable under high transmembrane pressure. A highly porous support normally yields under a pressure of a few MPa, which can result in a significant level of compressive strain that may significantly increase the resistance to permeation. However, quantifying the influence of porous support deformation on the overall resistance of the TFC membrane is challenging. In particular, it is difficult to determine the deformation/strain of the membrane during active separation. In this study, we use nanoimprint lithography (NIL) to achieve precise compressive deformation in commercial TFC membranes. By adjusting the NIL conditions, membranes were compressed to strain levels up to 60%. SEM and AFM measurements showed that the compression had minimal impact on the barrier-layer surface morphology and total surface area with most of the deformation occurring in the support layer. DI water permeation measurements revealed that the water flux reduction decreases with an increase of strain level. Most significantly, the intrinsic membrane resistance showed negligible changes at strain levels lower than 30%-40%, but increased exponentially at higher strain levels, reaching 250%-500% of pristine (unstrained) membrane values. Using a resistance-in-series model, the strain dependency of the TFC membrane resistance can be described.
Collapse
Affiliation(s)
- Masoud Aghajani
- Membrane Science, Engineering and Technology Center, Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309-0427, USA
| | - Mengyuan Wang
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309-0596, USA
| | - Lewis M. Cox
- Applied Chemicals and Materials Division, National Institute of Standards and Technology (NIST), Boulder, CO 80305, USA
| | - Jason P. Killgore
- Applied Chemicals and Materials Division, National Institute of Standards and Technology (NIST), Boulder, CO 80305, USA
| | - Alan R. Greenberg
- Membrane Science, Engineering and Technology Center, Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309-0427, USA
| | - Yifu Ding
- Membrane Science, Engineering and Technology Center, Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309-0427, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
39
|
Hutfles J, Chapman W, Pellegrino J. Roll‐to‐roll nanoimprint lithography of ultrafiltration membrane. J Appl Polym Sci 2017. [DOI: 10.1002/app.45993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jacob Hutfles
- Department of Mechanical EngineeringUniversity of Colorado‐BoulderBoulder Colorado80309
| | - Wesley Chapman
- Department of Mechanical EngineeringUniversity of Colorado‐BoulderBoulder Colorado80309
| | - John Pellegrino
- Department of Mechanical EngineeringUniversity of Colorado‐BoulderBoulder Colorado80309
| |
Collapse
|