1
|
Arandia K, Karna NK, Mattsson T, Larsson A, Theliander H. Fouling characteristics of microcrystalline cellulose during cross-flow microfiltration: Insights from fluid dynamic gauging and molecular dynamics simulations. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Puggioni G, Abd-Razak NH, Amura IF, Bird MR, Emanuelsson EA, Shahid S. Preparation and benchmarking of highly hydrophilic polyaniline poly(2-acrylamido-2-methyl-1-propanesulfonic acid) PANI PAMPSA membranes in the separation of sterols and proteins from fruit juice. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Zulkefli NF, Alias NH, Jamaluddin NS, Abdullah N, Abdul Manaf SF, Othman NH, Marpani F, Mat-Shayuti MS, Kusworo TD. Recent Mitigation Strategies on Membrane Fouling for Oily Wastewater Treatment. MEMBRANES 2021; 12:26. [PMID: 35054552 PMCID: PMC8780462 DOI: 10.3390/membranes12010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
The discharge of massive amounts of oily wastewater has become one of the major concerns among the scientific community. Membrane filtration has been one of the most used methods of treating oily wastewater due to its stability, convenience handling, and durability. However, the continuous occurrence of membrane fouling aggravates the membrane's performance efficiency. Membrane fouling can be defined as the accumulation of various materials in the pores or surface of the membrane that affect the permeate's quantity and quality. Many aspects of fouling have been reviewed, but recent methods for fouling reduction in oily wastewater have not been explored and discussed sufficiently. This review highlights the mitigation strategies to reduce membrane fouling from oily wastewater. We first review the membrane technology principle for oily wastewater treatment, followed by a discussion on different fouling mechanisms of inorganic fouling, organic fouling, biological fouling, and colloidal fouling for better understanding and prevention of membrane fouling. Recent mitigation strategies to reduce fouling caused by oily wastewater treatment are also discussed.
Collapse
Affiliation(s)
- Nur Fatihah Zulkefli
- Department of Oil and Gas Engineering, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (N.F.Z.); (N.S.J.); (S.F.A.M.); (N.H.O.); (F.M.); (M.S.M.-S.)
| | - Nur Hashimah Alias
- Department of Oil and Gas Engineering, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (N.F.Z.); (N.S.J.); (S.F.A.M.); (N.H.O.); (F.M.); (M.S.M.-S.)
| | - Nur Shafiqah Jamaluddin
- Department of Oil and Gas Engineering, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (N.F.Z.); (N.S.J.); (S.F.A.M.); (N.H.O.); (F.M.); (M.S.M.-S.)
| | - Norfadhilatuladha Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia;
| | - Shareena Fairuz Abdul Manaf
- Department of Oil and Gas Engineering, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (N.F.Z.); (N.S.J.); (S.F.A.M.); (N.H.O.); (F.M.); (M.S.M.-S.)
| | - Nur Hidayati Othman
- Department of Oil and Gas Engineering, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (N.F.Z.); (N.S.J.); (S.F.A.M.); (N.H.O.); (F.M.); (M.S.M.-S.)
| | - Fauziah Marpani
- Department of Oil and Gas Engineering, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (N.F.Z.); (N.S.J.); (S.F.A.M.); (N.H.O.); (F.M.); (M.S.M.-S.)
| | - Muhammad Shafiq Mat-Shayuti
- Department of Oil and Gas Engineering, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (N.F.Z.); (N.S.J.); (S.F.A.M.); (N.H.O.); (F.M.); (M.S.M.-S.)
| | - Tutuk Djoko Kusworo
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia;
| |
Collapse
|
4
|
Tian J, Zhao X, Gao S, Wang X, Zhang R. Progress in Research and Application of Nanofiltration (NF) Technology for Brackish Water Treatment. MEMBRANES 2021; 11:662. [PMID: 34564479 PMCID: PMC8468185 DOI: 10.3390/membranes11090662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/07/2022]
Abstract
Brackish water is a potential fresh water resource with lower salt content than seawater. Desalination of brackish water is an important option to alleviate the prevalent water crisis around the world. As a membrane technology ranging between UF and RO, NF can achieve the partial desalination via size exclusion and charge exclusion. So, it has been widely concerned and applied in treatment of brackish water during the past several decades. Hereon, an overview of the progress in research on and application of NF technology for brackish water treatment is provided. On the basis of expounding the features of brackish water, the factors affecting NF efficiency, including the feed water characteristics, operating conditions and NF membrane properties, are analyzed. For the ubiquitous membrane fouling problem, three preventive fouling control strategies including feed water pretreatment, optimization of operating conditions and selection of anti-fouling membranes are summarized. In addition, membrane cleaning methods for restoring the fouled membrane are discussed. Furthermore, the combined utilization of NF with other membrane technologies is reviewed. Finally, future research prospects are proposed to deal with the current existing problems. Lessons gained from this review are expected to promote the sustainable development of brackish water treatment with NF technology.
Collapse
Affiliation(s)
- Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (J.T.); (X.Z.); (S.G.)
| | - Xingrui Zhao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (J.T.); (X.Z.); (S.G.)
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (J.T.); (X.Z.); (S.G.)
| | - Xiaoying Wang
- School of Architectural Engineering, Sanming University, Sanming 365004, China;
| | - Ruijun Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (J.T.); (X.Z.); (S.G.)
| |
Collapse
|
5
|
Removal of Pharmaceuticals from Wastewater: Analysis of the Past and Present Global Research Activities. WATER 2021. [DOI: 10.3390/w13172353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Water pollution is a worldwide problem. Water consumption increases at a faster rate than population and this leads to a higher pollution rate. Sustainable Development Goals (SDG) include proposals aimed at ensuring the availability of clean water and its sustainable management (Goal 6), as well as the conservation and sustainable use of oceans and seas. The current trend consists in trying to reconcile economic growth with sustainability, avoiding the negative externalities for the environment generated by human activity. More specifically, the objective of this article is to present the evolution of the research regarding the removal of polluting pharmaceuticals that are discharged into wastewater. To do that, a bibliometric analysis of 2938 articles comprising the period 1979–2020 has been carried out. This analysis includes productivity indicators in the scientific field: journals, authors, research institutions and countries. In addition, keyword analysis allows the identification of four main axes of the research regarding the removal of pharmaceutical residues found in wastewater. The first group of articles is aimed at identifying the pharmaceuticals present in polluting effluents. The second and third groups of articles focus on presenting the procedures that enable the treatment of emerging contaminants, either from a biological point of view (second group) or a physicochemical point of view (third group). The fourth group refers to water quality and its possibilities to be reused. Finally, there is a growing trend of worldwide scientific publications, which justifies the importance of polluting residues management, especially those of pharmaceutical origin, in order to achieve a more sustainable society.
Collapse
|
6
|
Arandia K, Balyan U, Mattsson T. Development of a fluid dynamic gauging method for the characterization of fouling behavior during cross-flow filtration of a wood extraction liquor. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Rudolph G, Hermansson A, Jönsson AS, Lipnizki F. In situ real-time investigations on adsorptive membrane fouling by thermomechanical pulping process water with quartz crystal microbalance with dissipation monitoring (QCM-D). Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Khan IA, Lee YS, Kim JO. A comparison of variations in blocking mechanisms of membrane-fouling models for estimating flux during water treatment. CHEMOSPHERE 2020; 259:127328. [PMID: 32610174 DOI: 10.1016/j.chemosphere.2020.127328] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
This study investigates five different fouling models and contributing factors in membrane-filtration blocking mechanisms in a constant-pressure mode. A polyvinylidene fluoride membrane was used to study the fouling effects of a complex mixture of foulants (a latex-bed suspension, soybean oil, and inorganics) on pristine and chemically cleaned membranes in the presence of humic acid. A significance ratio in linear regression results (p-value) was used to assess the contribution of fouling mechanism in each model. The results indicate that Hermia and Bowen's models correspond closely with the experiment results and confirms that complete blocking is dominant fouling model. We also verify that each developed model is dependent on its experimental conditions. Moreover, the role of complex mixtures, including inorganic foulants, in the fouling process needs to be modified as modified for ceramic membranes and natural organic matter removal in the Wiesner and Kilduff models, respectively.
Collapse
Affiliation(s)
- Imtiaz Afzal Khan
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yong-Soo Lee
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
9
|
Abd-Razak NH, Zairossani MN, Chew YMJ, Bird MR. Fouling Analysis and the Recovery of Phytosterols from Orange Juice Using Regenerated Cellulose Ultrafiltration Membranes. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02541-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AbstractThis study describes the use of regenerated cellulose (RCA) membranes with molecular weight cut-off (MWCO) values of 10, 30, and 100 kDa, respectively, to separate phytosterols from orange juice for possible nutraceutical production. A desirable membrane separation rejects protein whilst transmitting phytosterols and other low molecular mass compounds such as sugars. The ultrafiltration was performed in a cross-flow membrane system with a total filtration area of 336 cm2. Total phytosterol analysis was carried out by using a Liebermann-Buchard-based method. Protein concentration was quantified by the Bradford method. The effects of three different membranes upon the rejection of total phytosterol content, proteins, sugar, and antioxidant activity were studied. Of the membranes tested, the 10-kDa membrane displayed the highest concentration of phytosterols in the permeate. The 30-kDa and 100-kDa membranes gave comparatively higher phytosterol rejection. The membrane surface roughness and corresponding pure water flux values varied as a function of MWCO such that RCA30 > RCA100 > RCA10. Membranes with rougher surfaces displayed higher fouling than those with smoother surfaces. Hydrophobicity and surface roughness both influenced filtration performance, by controlling the development of the protein-based foulant which modified membrane selectivity.
Collapse
|
10
|
Loginov M, Doudiès F, Hengl N, Pignon F, Gésan-Guiziou G. Influence of membrane resistance on swelling and removal of colloidal filter cake after filtration pressure release. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Tsai JH, Hallmark B, Wilson DI. Integrated Fluid Dynamic Gauge for Measuring the Thickness of Soft Solid Layers Immersed in Opaque, Viscous, and/or Non-Newtonian Liquids in Situ. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jheng-Han Tsai
- Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Bart Hallmark
- Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - D. Ian Wilson
- Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
12
|
Rudolph G, Virtanen T, Ferrando M, Güell C, Lipnizki F, Kallioinen M. A review of in situ real-time monitoring techniques for membrane fouling in the biotechnology, biorefinery and food sectors. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117221] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Zhou M, Mattsson T. Effect of crossflow regime on the deposit and cohesive strength of membrane surface fouling layers. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Chen W, Mo J, Du X, Zhang Z, Zhang W. Biomimetic dynamic membrane for aquatic dye removal. WATER RESEARCH 2019; 151:243-251. [PMID: 30599283 DOI: 10.1016/j.watres.2018.11.078] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 05/25/2023]
Abstract
This study utilized physical adsorption and filtration of carbon nanotubes (CNTs) and laccases to fabricate biomimetic dynamic membrane (BDM) for the advanced treatment of dye wastewater. In BDM, the adsorption, enzymatic degradation and membrane separation demonstrated a synergism effect on pollutant removal. At first, the fabrication methods of BDM were investigated, and the mixed filtration for laccases and CNTs showed a better performance than the stepwise filtration. Furthermore, the operation parameters of BDM, including CNTs and laccase loading amounts, dye concentration, agitation speed and transmembrane pressure (TMP), were studied. Suitable CNTs and laccase amounts could reduce filtration resistance and increase catalysis efficiency, while moderate TMP and agitation speed were in favor of boosting the BDM structure for catalysis and permeability. Optimized operation parameters (CNT loading amount = 20 g m-2, laccase loading amount = 74.6 g m-2, agitation speed = 100 rpm, and TMP = 1.0 bar) sustained a high removal rate, and the flux was over 120 L m-2 h-1, even for 7 operation cycle' tests. BDM exhibited an excellent dye removal rate, stable flux and great antifouling capacity, on the ground that adsorption saturation and foulant may be alleviated "online and in-situ" by the enzymatic degradation. Afterwards, the bionic layer on BDM, after absorption saturation and catalyst deactivation, could be eliminated rapidly by carrying out a simple backwash cleaning operation, then a new one could be fabricated immediately. Therefore, BDM is a good candidate for functional membrane materials in future water treatment.
Collapse
Affiliation(s)
- Wensong Chen
- School of Environmental Science and Engineering, Guangzhou, 510006, China
| | - Jiahao Mo
- School of Environmental Science and Engineering, Guangzhou, 510006, China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Wenxiang Zhang
- School of Environmental Science and Engineering, Guangzhou, 510006, China.
| |
Collapse
|
15
|
|
16
|
Arimi MM. Particle size distribution as an emerging tool for the analysis of wastewater. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/21622515.2018.1540666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Milton M. Arimi
- Department of Environmental Technology, Technische Universität Berlin, Berlin, Germany
- Faculty of Technology, Moi University Main Campus, Eldoret, Kenya
| |
Collapse
|
17
|
|
18
|
Di H, Martin GJ, Sun Q, Xie D, Dunstan DE. Detailed, real-time characterization of particle deposition during crossflow filtration as influenced by solution properties. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|