1
|
Qiao Y, Xu S, Wu Y, Zhang L, Xie L. Dehydration of Organic Solvents from Ternary Mixtures Containing Toluene/Methanol/Water by Pervaporation. MEMBRANES 2024; 14:139. [PMID: 38921506 PMCID: PMC11205444 DOI: 10.3390/membranes14060139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
The separation of a toluene/methanol/water ternary mixture is a difficult task due to the toluene/water and toluene/methanol azeotropes. In this article, low-energy pervaporation is proposed for the separation of the ternary azeotrope toluene-methanol-water. This work investigates the effects of feed temperature, feed flow rate, and vacuum on pervaporation and compares the energy consumption of pervaporation with that of distillation. The results showed that at the optimized flow rate of 50 L/h and a permeate side vacuum of 60 kPa at 50 °C, the water and methanol content in the permeate was about 63.2 wt.% and 36.8 wt.%, respectively, the water/ methanol separation factor was 24.04, the permeate flux was 510.7 g/m2·h, the water content in the feed out was reduced from 2.5 wt.% to less than 0.66 wt.%, and the dehydration of toluene methanol could be realized. Without taking into account the energy consumption of pumps and other power equipment, pervaporation requires an energy consumption of 43.53 kW·h to treat 1 ton of raw material, while the energy consumption of distillation to treat 1 ton of raw material is about 261.5 kW·h. Compared to the existing distillation process, the pervaporation process consumes much less energy (about one-sixth of the energy consumption of distillation). There is almost no effect on the surface morphology and chemical composition of the membrane before and after use. The method provides an effective reference for the dehydration of organic solvents from ternary mixtures containing toluene/methanol/water.
Collapse
Affiliation(s)
| | - Shichang Xu
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.Q.); (Y.W.); (L.Z.)
| | | | | | - Lixin Xie
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.Q.); (Y.W.); (L.Z.)
| |
Collapse
|
2
|
SUZ-4 Zeolite Interlayer Enhanced Thin-film Composite Pervaporation Membrane for Ethanol Dehydration. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
3
|
Calcium alginate and barium alginate hydrogel filtration membrane coated on fibers for molecule/ion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118761] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Sanap PP, Mahajan YS. Review on technologies to separate and purify ethyl alcohol from dilute aqueous solutions. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Ethyl alcohol (ethanol) is viewed upon as a fuel additive or even as an alternative fuel. Fermentation is used to produce dilute (<20 mass%) ethanol. This is needed to be concentrated to almost anhydrous, fuel grade ethanol (>99.5 mass%). The technologies used for concentration from dilute grade to fuel grade ethanol are summarized in this review. Thus, extraction; distillation; use of membranes; adsorption and some miscellaneous methods are discussed in detail. For each technique, the inlet and outlet concentrations; merits and demerits and scope for future work are indicated. Hybrid separations are discussed. In addition to technical feasibility, economic viability of the techniques is also discussed. A brief discussion on current industrial practice is also presented.
Collapse
Affiliation(s)
- Pooja P. Sanap
- Chemical Engineering Department , Dr. B. A. Technological University , Lonere, Tal. Mangoan , Dist. Raigad , Maharashtra 402 103 , India
| | - Yogesh S. Mahajan
- Chemical Engineering Department , Dr. B. A. Technological University , Lonere, Tal. Mangoan , Dist. Raigad , Maharashtra 402 103 , India
| |
Collapse
|
5
|
Liu Z, Lin W, Li Q, Rong Q, Zu H, Sang M. Separation of dimethyl carbonate/methanol azeotropic mixture by pervaporation with dealcoholized room temperature-vulcanized silicone rubber/nanosilica hybrid active layer. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Yazdi MK, Vatanpour V, Taghizadeh A, Taghizadeh M, Ganjali MR, Munir MT, Habibzadeh S, Saeb MR, Ghaedi M. Hydrogel membranes: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111023. [PMID: 32994021 DOI: 10.1016/j.msec.2020.111023] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Hydrogel membranes (HMs) are defined and applied as hydrated porous media constructed of hydrophilic polymers for a broad range of applications. Fascinating physiochemical properties, unique porous architecture, water-swollen features, biocompatibility, and special water content dependent transport phenomena in semi-permeable HMs make them appealing constructs for various applications from wastewater treatment to biomedical fields. Water absorption, mechanical properties, and viscoelastic features of three-dimensional (3D) HM networks evoke the extracellular matrix (ECM). On the other hand, the porous structure with controlled/uniform pore-size distribution, permeability/selectivity features, and structural/chemical tunability of HMs recall membrane separation processes such as desalination, wastewater treatment, and gas separation. Furthermore, supreme physiochemical stability and high ion conductivity make them promising to be utilised in the structure of accumulators such as batteries and supercapacitors. In this review, after summarising the general concepts and production processes for HMs, a comprehensive overview of their applications in medicine, environmental engineering, sensing usage, and energy storage/conservation is well-featured. The present review concludes with existing restrictions, possible potentials, and future directions of HMs.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Iran, Tehran.
| | - Ali Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohsen Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Kuwait; Department of Chemical and Materials Engineering, The University of Auckland, New Zealand
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| |
Collapse
|
7
|
Seidi F, Zhao W, Xiao H, Jin Y, Saeb MR, Zhao C. Radical polymerization as a versatile tool for surface grafting of thin hydrogel films. Polym Chem 2020. [DOI: 10.1039/d0py00787k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The surface of solid substrates is the main part that interacts with the environment.
Collapse
Affiliation(s)
- Farzad Seidi
- Provincial Key Lab of Pulp & Paper Sci and Tech
- and Joint International Research Lab of Lignocellulosic Functional Materials
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Weifeng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Huining Xiao
- Department of Chemical Engineering
- University of New Brunswick
- Fredericton
- E3B 5A3 Canada
| | - Yongcan Jin
- Provincial Key Lab of Pulp & Paper Sci and Tech
- and Joint International Research Lab of Lignocellulosic Functional Materials
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Mohammad Reza Saeb
- Department of Resin and Additives
- Institute for Color Science and Technology
- Tehran
- Iran
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
8
|
Wang Y, He Y, Yan S, Yin X, Chen J. Development of alginate hydrogel modified multifunctional filtration membrane with robust anti-fouling property for efficient water purification. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123891] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Lin YF, Ho JC, Andrew Lin KY, Tung KL, Chung TW, Lee CC. A drying-free and one-step process for the preparation of siloxane/CS mixed-matrix membranes with outstanding ethanol dehydration performances. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Jyothi MS, Reddy KR, Soontarapa K, Naveen S, Raghu AV, Kulkarni RV, Suhas DP, Shetti NP, Nadagouda MN, Aminabhavi TM. Membranes for dehydration of alcohols via pervaporation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:415-429. [PMID: 31063879 DOI: 10.1016/j.jenvman.2019.04.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Alcohols are the essential chemicals used in a variety of pharmaceutical and chemical industries. The extreme purity of alcohols in many of such industrial applications is essential. Though distillation is one of the methods used conventionally to purify alcohols, the method consumes more energy and requires carcinogenic entertainers, making the process environmentally toxic. Alternatively, efforts have been made to focus research efforts on alcohol dehydration by the pervaporation (PV) separation technique using polymeric membranes. The present review is focused on alcohol dehydration using PV separation technique, which is the most efficient and benign method of purifying alcohols that are required in fine chemicals synthesis and developing pharmaceutical formulations. This review will discuss about the latest developments in the area of PV technique used in alcohol dehydration using a variety of novel membranes.
Collapse
Affiliation(s)
- M S Jyothi
- Department of Chemical Technology, Faculty of Sciences, & Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 10330, Thailand
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - K Soontarapa
- Department of Chemical Technology, Faculty of Sciences, & Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 10330, Thailand
| | - S Naveen
- Department of Basic Sciences, Center for Emerging Technology, SET, JAIN Deemed to be University, Bangalore 562 112, India
| | - Anjanapura V Raghu
- Department of Basic Sciences, Center for Emerging Technology, SET, JAIN Deemed to be University, Bangalore 562 112, India.
| | - Raghavendra V Kulkarni
- Department of Pharmaceutics, BLDEA's SSM College of Pharmacy and Research Centre, Vijayapur, 586 103, Karnataka, India
| | - D P Suhas
- Department of Chemistry, St. Joseph's College, Langford Road, Bangalore, 560027, India
| | - Nagaraj P Shetti
- Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi, 580030, India
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
11
|
Functionalization of ultrafiltration membrane with polyampholyte hydrogel and graphene oxide to achieve dual antifouling and antibacterial properties. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
The preparation of polyelectrolyte/hydrolyzed polyacrylonitrile composite hollow fiber membrane for pervaporation. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Knozowska K, Kujawski W, Zatorska P, Kujawa J. Pervaporative efficiency of organic solvents separation employing hydrophilic and hydrophobic commercial polymeric membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Synthesis of mesoporous SiO 2 xerogel/chitosan mixed-matrix membranes for butanol dehydration. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Roy S, Singha NR. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects. MEMBRANES 2017; 7:membranes7030053. [PMID: 28885591 PMCID: PMC5618138 DOI: 10.3390/membranes7030053] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/17/2022]
Abstract
Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.
Collapse
Affiliation(s)
- Sagar Roy
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Kolkata-700106, West Bengal, India.
| |
Collapse
|