1
|
Zhao Y, Song X, Zheng L, Zhang Y, Liang W, Huang M, Jiang H. Photothermal-Assisted Interfacial Polymerization toward Microstructure Regulation of a Polyamide Membrane with Enhanced Separation Performance. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28927-28936. [PMID: 40326423 DOI: 10.1021/acsami.5c04520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
A highly permeable thin-film composite (TFC) polyamide membrane with efficient salt rejection is valuable for numerous industrial processes. To achieve this objective, it is essential to innovate the membrane fabrication process to produce an ultrathin polyamide separation layer. In this study, a photothermal-assisted interfacial polymerization (IP) strategy was proposed to fabricate TFC polyamide membranes by incorporating carboxylated carbon nanotubes (CNTs) with exceptional photothermal properties. CNTs absorb solar energy and convert it into heat, significantly elevating the temperature in their microregions, thereby accelerating the reaction between m-phenylenediamine (MPD) and trimesoyl chloride (TMC) during the IP process. Exploiting the self-inhibition characteristics of IP, the preformed polyamide layer suppresses the subsequent diffusion of MPD into the reaction interface, resulting in the formation of an ultrathin polyamide layer. Consequently, the CNTs-modified polyamide membrane with photothermal assistance obtains a thickness of approximately 94 nm, significantly thinner than the control membrane (189 nm). Furthermore, it demonstrates a superior water flux of 54.4 L m-2 h-1, higher than that of the pristine TFC membrane without CNTs and the conventional CNTs-modified membrane, while maintaining a NaCl rejection of ∼96%. The photothermal-assisted IP strategy provides some inspiration for engineering high-performance polyamide membranes available in various advanced separations.
Collapse
Affiliation(s)
- Yanyu Zhao
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, Shandong Province, China
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Chinese Academy of Sciences, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, Shandong Province, China
| | - Xiangju Song
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Chinese Academy of Sciences, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, Shandong Province, China
| | - Lin Zheng
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Chinese Academy of Sciences, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, Shandong Province, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Beijing 100049, China
| | - Yan Zhang
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Chinese Academy of Sciences, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, Shandong Province, China
| | - Wenyuan Liang
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Chinese Academy of Sciences, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, Shandong Province, China
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, Shandong Province, China
| | - Heqing Jiang
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Chinese Academy of Sciences, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, Shandong Province, China
| |
Collapse
|
2
|
Farahbakhsh J, Golgoli M, Khiadani M, Najafi M, Suwaileh W, Razmjou A, Zargar M. Recent advances in surface tailoring of thin film forward osmosis membranes: A review. CHEMOSPHERE 2024; 346:140493. [PMID: 37890801 DOI: 10.1016/j.chemosphere.2023.140493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The recent advancements in fabricating forward osmosis (FO) membranes have shown promising results in desalination and water treatment. Different methods have been applied to improve FO performance, such as using mixed or new draw solutions, enhancing the recovery of draw solutions, membrane modification, and developing FO-hybrid systems. However, reliable methods to address the current issues, including reverse salt flux, fouling, and antibacterial activities, are still in progress. In recent decades, surface modification has been applied to different membrane processes, including FO membranes. Introducing nanochannels, bioparticles, new monomers, and hydrophilic-based materials to the surface layer of FO membranes has significantly impacted their performance and efficiency and resulted in better control over fouling and concentration polarization (CP) in these membranes. This review critically investigates the recent developments in FO membrane processes and fabrication techniques for FO surface-layer modification. In addition, this study focuses on the latest materials and structures used for the surface modification of FO membranes. Finally, the current challenges, gaps, and suggestions for future studies in this field have been discussed in detail.
Collapse
Affiliation(s)
- Javad Farahbakhsh
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Wafa Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha, Qatar
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
3
|
Xie H, Wang Y, Wang P, Liu S, Ye Q, Liu W. Poly(tannic acid)-functionalized onion-like carbon nanoparticles derived from candle soot serving as potent lubricant additives. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Song Q, Lin Y, Ueda T, Shen Q, Lee KR, Yoshioka T, Matsuyama H. A zwitterionic copolymer-interlayered ultrathin nanofilm with ridge-shaped structure for ultrapermeable nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Suwaileh W, Zargar M, Abdala A, Siddiqui F, Khiadani M, Abdel-Wahab A. Concentration polarization control in stand-alone and hybrid forward osmosis systems: Recent technological advancements and future directions. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Samieirad S, Mousavi SM, Saljoughi E. Novel chlorine resistant thin-film composite forward osmosis membrane: Preparation and performance evaluation in the regeneration of MEG aqueous solution. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Understanding the role of substrates on thin film composite membranes: A green solvent approach with TamiSolve® NxG. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Zheng K, Zhou S, Cheng Z, Huang G. Polyvinyl chloride/quaternized poly phenylene oxide substrates supported thin-film composite membranes: Enhancement of forward osmosis performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Darabi RR, Peyravi M, Jahanshahi M. Forward osmosis process membranes incorporated with functionalized P.ZnO nanoparticles for organic fouling control. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0707-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Constructing dense and hydrophilic forward osmosis membrane by cross-linking reaction of graphene quantum dots with monomers for enhanced selectivity and stability. J Colloid Interface Sci 2021; 589:486-499. [PMID: 33486284 DOI: 10.1016/j.jcis.2021.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 11/22/2022]
Abstract
This paper reports a novel thin-film nanocomposite (TFN) membrane with a dense, flat, and hydrophilic polyamide (PA) layer. The atypical PA structure was obtained by the cross-linking reaction of graphene oxide quantum dots containing amino groups (NH2-GOQDs) with triacyl chloride and polyamide oligomers. And the resulting TFN membrane showed a flat (small-scale ridge structure) and smooth surface. Meanwhile, the introduction of oxygen-containing and amino functional groups increased surface hydrophilicity. The reaction of amino groups on the NH2-GOQDs with acid chloride groups and the carboxyl groups (in the linear part of the polyamide) enhanced the degree of cross-linking of the PA layer, forming a compact surface. Owning to the dense surface structure, excellent hydrophilicity, and small water transmission distance, the optimized TFN membrane exhibited an enhanced water flux of 26.57 L⋅m-2⋅h-1 with a low reverse salt flux of 6.0 g⋅m-2⋅h-1. Furthermore, nano-indentation/scratch results showed the interface adhesion between substrate and PA layer was improved due to the physical anchoring of NH2-GOQDs in the substrate. And in the long-term FO test, the TFN membrane showed stable selectivity. This work proves that the targeted structural design of the PA layer at the nanoscale will have a positive impact on desalination field.
Collapse
|
11
|
Shen L, Yi M, Japip S, Han C, Tian L, Lau CH, Wang Y. Breaking through permeability–selectivity trade‐off of thin‐film composite membranes assisted with crown ethers. AIChE J 2021. [DOI: 10.1002/aic.17173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Liang Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| | - Ming Yi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| | - Susilo Japip
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore Singapore
| | - Chao Han
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| | - Lian Tian
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| | - Cher Hon Lau
- School of Engineering The University of Edinburgh Edinburgh UK
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| |
Collapse
|
12
|
|
13
|
Novel solvent-resistant nanofiltration membranes using MPD co-crosslinked polyimide for efficient desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Zheng K, Zhou S, Cheng Z, Huang G. Thin‐film composite forward osmosis membrane prepared from polyvinyl chloride/cellulose carbamate substrate and its potential application in brackish water desalination. J Appl Polym Sci 2020. [DOI: 10.1002/app.49939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ke Zheng
- School of Civil Engineering and Transportation South China University of Technology Guangzhou, Guangdong China
- School of Environment and Energy South China University of Technology Guangzhou, Guangdong China
| | - Shaoqi Zhou
- School of Civil Engineering and Transportation South China University of Technology Guangzhou, Guangdong China
- Guizhou Institute of Biology, Guizhou Academy of Sciences Guiyang, Guizhou China
- School of Environment and Energy South China University of Technology Guangzhou, Guangdong China
- State Key Laboratory of Subtropical Building Science South China University of Technology Guangzhou, Guangdong China
| | - Zuqin Cheng
- School of Environment and Energy South China University of Technology Guangzhou, Guangdong China
| | - Guoru Huang
- School of Civil Engineering and Transportation South China University of Technology Guangzhou, Guangdong China
- State Key Laboratory of Subtropical Building Science South China University of Technology Guangzhou, Guangdong China
| |
Collapse
|
15
|
Jin P, Robeyn M, Zheng J, Yuan S, Van der Bruggen B. Tailoring Charged Nanofiltration Membrane Based on Non-Aromatic Tris(3-aminopropyl)amine for Effective Water Softening. MEMBRANES 2020; 10:membranes10100251. [PMID: 32987665 PMCID: PMC7598621 DOI: 10.3390/membranes10100251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022]
Abstract
High-performance positively-charged nanofiltration (NF) membranes have a profound significance for water softening. In this work, a novel monomer, tris(3-aminopropyl)amine (TAEA), with one tertiary amine group and three primary amine groups, was blended with trace amounts of piperazine (PIP) in aqueous solution to fabricate a positively-charged NF membrane with tunable performance. As the molecular structures of TAEA and PIP are totally different, the chemical composition and structure of the polyamine selective layer could be tailored via varying the PIP content. The resulting optimal membrane exhibited an excellent water permeability of 10.2 LMH bar−1 and a high rejection of MgCl2 (92.4%), due to the incorporation of TAEA/PIP. In addition, this TAEA NF membrane has a superior long-term stability. Thus, this work provides a facile way to prepare a positively charged membrane with an efficient water softening ability.
Collapse
Affiliation(s)
- Pengrui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; (P.J.); (M.R.); (J.Z.)
| | - Michiel Robeyn
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; (P.J.); (M.R.); (J.Z.)
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; (P.J.); (M.R.); (J.Z.)
| | - Shushan Yuan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (S.Y.); (B.V.d.B.)
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; (P.J.); (M.R.); (J.Z.)
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
- Correspondence: (S.Y.); (B.V.d.B.)
| |
Collapse
|
16
|
Shen L, Zhang X, Tian L, Li Z, Ding C, Yi M, Han C, Yu X, Wang Y. Constructing substrate of low structural parameter by salt induction for high-performance TFC-FO membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Shen L, Hung WS, Zuo J, Tian L, Yi M, Ding C, Wang Y. Effect of ultrasonication parameters on forward osmosis performance of thin film composite polyamide membranes prepared with ultrasound-assisted interfacial polymerization. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117834] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Novel thin-film composite pervaporation membrane with controllable crosslinking degree for enhanced water/alcohol separation performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Shao DD, Yang WJ, Xiao HF, Wang ZY, Zhou C, Cao XL, Sun SP. Self-Cleaning Nanofiltration Membranes by Coordinated Regulation of Carbon Quantum Dots and Polydopamine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:580-590. [PMID: 31809020 DOI: 10.1021/acsami.9b16704] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Performance declination of nanofiltration (NF) membranes caused by concentration polarization (CP) and membrane fouling has severely restricted their practical application in many fields. This work reports the construction of a novel interlayer between the substrate and the selective layer of conventional composite membranes by coordinating regulation of carbon quantum dots (CQDs) and polydopamine (PDA). Unlike traditional methods that treat CP and fouling separately, the new strategy grants the membrane with dual functions at one time. First, the insertion of the PDA-CQDs layer reformulates the interfacial polymerization process that reduces the solute transport resistance and mitigates the CP issue. Second, the sandwiched photoactive CQDs can degrade organic molecules adsorbed on the membrane surface under visible light, which is promising for low-cost fouling remediation. This study may offer valuable insights into the preparation of durable self-cleaning NF membranes for the effective treatment of complex wastewater in various industries.
Collapse
|
20
|
Yang Z, Guo H, Tang CY. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117297] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Zhang X, Xiong S, Liu CX, Shen L, Ding C, Guan CY, Wang Y. Confining migration of amine monomer during interfacial polymerization for constructing thin-film composite forward osmosis membrane with low fouling propensity. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Chen Y, Ge Q. A Bifunctional Zwitterion That Serves as Both a Membrane Modifier and a Draw Solute for Forward Osmosis Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36118-36129. [PMID: 31498984 DOI: 10.1021/acsami.9b13142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Producing clean water and simultaneously recovering valuable compounds are a big challenge in wastewater treatment. Here we designed a bifunctional zwitterion of (1-(3-aminopropyl)imidazole) propanesulfonate (APIS) for membrane modification and being a draw solute as well for water production and protein enrichment via forward osmosis (FO). Immobilized to the membrane surface by a fast amidation reaction, APIS endows the membrane with favorable properties benefiting the FO process. The APIS-modified sulfonated poly(ether sulfone) (APIS-sPES) membrane produces a water flux 101% higher than that of the nascent membrane (from 9.3 to 18.7 LMH) with 0.5 M NaCl as the draw solution. The APIS-sPES membrane also exhibits higher fouling resistance with a much smaller decline in water permeation and stronger renewability with the flux restored to 88% of the original value compared to a 59% recovery rate of the nascent membrane after 20-h experiments against a 200 ppm ovalbumin solution. APIS produces a fair good water flux coupled with negligible reverse diffusion when used as a draw solute and can be readily regenerated via pH regulation. Unlike the conventional NaCl draw solute, APIS does not contaminate or damage protein structure. The APIS-sPES membrane and APIS draw solute prove a perfect match in protein-containing wastewater treatment and protein enrichment.
Collapse
Affiliation(s)
- Yichen Chen
- College of Environment and Resources , Fuzhou University , Fujian 350116 , China
| | - Qingchun Ge
- College of Environment and Resources , Fuzhou University , Fujian 350116 , China
| |
Collapse
|
23
|
Shen L, Yi M, Tian L, Wang F, Ding C, Sun S, Lu A, Su L, Wang Y. Efficient surface ionization and metallization of TFC membranes with superior separation performance, antifouling and anti-bacterial properties. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Xiao HF, Chu CH, Xu WT, Chen BZ, Ju XH, Xing W, Sun SP. Amphibian-inspired amino acid ionic liquid functionalized nanofiltration membranes with high water permeability and ion selectivity for pigment wastewater treatment. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nat Commun 2019; 10:2558. [PMID: 31186411 PMCID: PMC6560128 DOI: 10.1038/s41467-019-10631-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/14/2019] [Indexed: 11/08/2022] Open
Abstract
We report Layer-by-Layer (LbL) self-assembly of pillared two-dimensional (2D) multilayers, from water, onto a wide range of substrates. This LbL method uses a small molecule, tris(2-aminoethyl) amine (TAEA), and a colloidal dispersion of Ti3C2Tx MXene to LbL self-assemble (MXene/TAEA)n multilayers, where n denotes the number of bilayers. Assembly with TAEA results in highly ordered (MXene/TAEA)n multilayers where the TAEA expands the interlayer spacing of MXene flakes by only ~ 1 Å and reinforces the interconnection between them. The TAEA-pillared MXene multilayers show the highest electronic conductivity of 7.3 × 104 S m-1 compared with all reported MXene multilayers fabricated by LbL technique. The (MXene/TAEA)n multilayers could be used as electrodes for flexible all-solid-state supercapacitors delivering a high volumetric capacitance of 583 F cm-3 and high energy and power densities of 3.0 Wh L-1 and 4400 W L-1, respectively. This strategy enables large-scale fabrication of highly conductive pillared MXene multilayers, and potentially fabrication of other 2D heterostructures.
Collapse
|
26
|
Graphene oxide/cross-linked polyimide (GO/CLPI) composite membranes for organic solvent nanofiltration. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.03.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Sun J, Hu X, Huang Y, Peng R, Luo Y, Yu P. 1,3‐Diamino‐2‐propanol or 2‐aminoethanethiol modified active layer of thin‐film composite forward osmosis membrane. J Appl Polym Sci 2019. [DOI: 10.1002/app.47923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiajin Sun
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Xuhui Hu
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Yangbo Huang
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Ruichao Peng
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Yunbai Luo
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Ping Yu
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| |
Collapse
|
28
|
Modified forward osmosis membranes by two amino-functionalized ZnO nanoparticles: A comparative study. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Gai W, Zhao DL, Chung TS. Thin film nanocomposite hollow fiber membranes comprising Na +-functionalized carbon quantum dots for brackish water desalination. WATER RESEARCH 2019; 154:54-61. [PMID: 30771707 DOI: 10.1016/j.watres.2019.01.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 05/21/2023]
Abstract
We have incorporated Na+-functionalized carbon quantum dots (Na-CQDs) into the polyamide layer via interfacial polymerization reaction and developed novel thin film nanocomposite (TFN) hollow fiber membranes for brackish water desalination. Comparing with the conventional thin film composite (TFC) membranes, the TFN membranes comprising Na-CQDs have a larger effective surface area, thinner polyamide layer and more hydrophilic oxygen-containing groups in the polyamide layer. Besides, the interstitial space among the polyamide chains becomes larger due to the presence of Na-CQDs. As a result, the incorporation of 1 wt% Na-CQDs into the polyamide layer could improve the pure water permeability (PWP) of the membranes from 1.74 LMH/bar to 2.56 LMH/bar by 47.1% without compromising their NaCl rejection of 97.7%. Interestingly, stabilization of the TFN hollow fiber membranes containing 1 wt% Na-CQDs at 23 bar could further promote the PWP to 4.27 LMH/bar and the salt rejection to 98.6% under the same testing conditions due to the deformation of the membranes under a high hydraulic pressure. When using a 2000 ppm NaCl aqueous solution as the feed, the optimal water flux and rejection of the newly developed TFN membranes at 15 bar are 57.65 ± 3.26 LMH and 98.6% ± 0.35% respectively. The Na-CQDs incorporated TFN hollow fiber membranes show promising applications in the field of brackish water desalination.
Collapse
Affiliation(s)
- Wenxiao Gai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Die Ling Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
30
|
Duong PHH, Daumann K, Hong PY, Ulbricht M, Nunes SP. Interfacial Polymerization of Zwitterionic Building Blocks for High-Flux Nanofiltration Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1284-1293. [PMID: 29983069 DOI: 10.1021/acs.langmuir.8b00960] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A simple scalable strategy is proposed to fabricate highly permeable antifouling nanofiltration membranes. Membranes with a selective thin polyamide layer were prepared via interfacial polymerization incorporating building blocks of zwitterionic copolymers. The zwitterionic copolymer, poly(aminopropyldimethylaminoethyl methacrylate)- co-poly(sulfobetaine methacrylate) with an average molecular weight of 6.1 kg mol-1, was synthesized in three steps: (i) polymerization of dimethylaminoethyl methacrylate to yield the base polymer by atom transfer radical polymerization (ATRP), (ii) fractional sulfobetainization via quaternization, and (iii) amination via quaternization. The effect of the zwitterionic polymer content on the polyamide surface characteristics, fouling resistance, and permeance is demonstrated. The zwitterion-modified membrane becomes more hydrophilic with lower surface roughness, as the zwitterionic polymer fraction increases. The excellent fouling resistance of the zwitterion-modified membrane was confirmed by the negligible protein adsorption and low bacteria fouling compared to a pristine membrane without zwitterionic segments. In addition, the zwitterion-modified membranes achieve a water permeation around 135 L m-2 h-1bar-1, which is 27-fold higher than that of the pristine membrane, along with good selectivity in the nanofiltration range, confirmed by the rejection of organic dyes. This permeance is about 10 times higher than that of other reported loose nanofiltration membranes with comparable dye rejection. The newly designed membrane is promising as a highly permeable fouling resistant cross-linked polyamide network for various water treatment applications.
Collapse
Affiliation(s)
| | - Kevin Daumann
- Lehrstuhl für Technische Chemie II , Universität Duisburg-Essen , 45117 Essen , Germany
| | | | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II , Universität Duisburg-Essen , 45117 Essen , Germany
| | | |
Collapse
|
31
|
Xiong S, Xu S, Zhang S, Phommachanh A, Wang Y. Highly permeable and antifouling TFC FO membrane prepared with CD-EDA monomer for protein enrichment. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Li C, Li S, Tian L, Zhang J, Su B, Hu MZ. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN). J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
High-performance thin-film composite polyamide membranes developed with green ultrasound-assisted interfacial polymerization. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Tian E, Wang X, Wang X, Ren Y, Zhao Y, An X. Preparation and Characterization of Thin-Film Nanocomposite Membrane with High Flux and Antibacterial Performance for Forward Osmosis. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Enling Tian
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Beibei District, Chongqing 400714, China
| | - Xingzu Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Beibei District, Chongqing 400714, China
| | - Xiao Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Beibei District, Chongqing 400714, China
| | - Yiwei Ren
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Beibei District, Chongqing 400714, China
| | - Yuntao Zhao
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Beibei District, Chongqing 400714, China
| | - Xiaochan An
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
35
|
Zhang X, Shen L, Guan CY, Liu CX, Lang WZ, Wang Y. Construction of SiO2@MWNTs incorporated PVDF substrate for reducing internal concentration polarization in forward osmosis. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Shen L, Wang F, Tian L, Zhang X, Ding C, Wang Y. High-performance thin-film composite membranes with surface functionalization by organic phosphonic acids. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Facile fabrication of solvent resistant thin film composite membranes by interfacial crosslinking reaction between polyethylenimine and dibromo-p-xylene on polybenzimidazole substrates. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Zheng K, Zhou S, Zhou X. A low-cost and high-performance thin-film composite forward osmosis membrane based on an SPSU/PVC substrate. Sci Rep 2018; 8:10022. [PMID: 29968803 PMCID: PMC6030131 DOI: 10.1038/s41598-018-28436-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/20/2018] [Indexed: 11/09/2022] Open
Abstract
A low-cost sulfonated polysulfone (SPSU)/poly(vinyl chloride) (PVC) substrate based high-performance thin-film composite (TFC) forward osmosis (FO) membrane was fabricated in this work. The results showed that the morphologies of the substrates were looser and more porous, and the porosity, pure water permeability, surface hydrophilicity, and average pore size of the substrates significantly improved after the SPSU was introduced into the PVC substrates. Furthermore, the SPSU/PVC-based TFC membranes exhibited rougher, looser and less crosslinked polyamide active layers than the neat PVC-based TFC membrane. The water permeability obviously increased, and the structure parameter dramatically declined. Moreover, the FO performance significantly improved (e.g. the water flux of TFC2.5 reached 25.53/48.37 LMH under FO/PRO mode by using 1.0 M NaCl/DI water as the draw/feed solution, while the specific salt flux exhibited a low value of 0.10/0.09 g/L). According to the results, it can be concluded that 2.5% of SPSU was the optimal blend ratio, which exhibited the lowest sulfonated material blend ratio compared to the data reported in the literature. Hence, this is a feasible and low-cost fabrication approach for high-performance FO membrane by using the cheap PVC and low blend-ratio SPSU as the membrane materials.
Collapse
Affiliation(s)
- Ke Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Shaoqi Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China. .,Guizhou Academy of Sciences, Shanxi Road 1, Guiyang, 550001, P. R. China. .,State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, 510641, P. R. China. .,The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, P. R. China.
| | - Xuan Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| |
Collapse
|
39
|
Gai W, Zhao DL, Chung TS. Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Shen L, Wang Y. Efficient surface modification of thin-film composite membranes with self-catalyzed tris(2-aminoethyl)amine for forward osmosis separation. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Zheng K, Zhou S, Zhou X. High-performance thin-film composite forward osmosis membrane fabricated on low-cost PVB/PVC substrate. NEW J CHEM 2018. [DOI: 10.1039/c8nj01677a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incorporation of the PVB significantly improved the performance of the PVB/PVC substrates based thin-film composite forward osmosis membrane.
Collapse
Affiliation(s)
- Ke Zheng
- School of Environment and Energy
- South China University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- P. R. China
| | - Shaoqi Zhou
- School of Environment and Energy
- South China University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- P. R. China
| | - Xuan Zhou
- School of Environment and Energy
- South China University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- P. R. China
| |
Collapse
|
42
|
Duong PHH, Zuo J, Nunes SP. Dendrimeric Thin-Film Composite Membranes: Free Volume, Roughness, and Fouling Resistance. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Phuoc H. H. Duong
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering
Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Jian Zuo
- National University of Singapore, Department of Chemical
and Biomolecular Engineering, 4 Engineering Drive 4, 117585 Singapore
| | - Suzana P. Nunes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering
Division (BESE), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
43
|
Ma D, Han G, Peh SB, Chen SB. Water-Stable Metal–Organic Framework UiO-66 for Performance Enhancement of Forward Osmosis Membranes. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03278] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dangchen Ma
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Gang Han
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Shing Bor Chen
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|