1
|
Han G, Lv J, Chen M. ZIF-67 Incorporated Sulfonated Poly (Aryl Ether Sulfone) Mixed Matrix Membranes for Pervaporation Separation of Methanol/Methyl Tert-Butyl Ether Mixture. MEMBRANES 2023; 13:389. [PMID: 37103816 PMCID: PMC10141737 DOI: 10.3390/membranes13040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Mixed matrix membranes (MMMs) with nano-fillers dispersed in polymer matrix have been proposed as alternative pervaporation membrane materials. They possess both promising selectivity benefiting from the fillers and economical processing capabilities of polymers. ZIF-67 was synthesized and incorporated into the sulfonated poly (aryl ether sulfone) (SPES) matrix to prepare SPES/ZIF-67 mixed matrix membranes with different ZIF-67 mass fractions. The as-prepared membranes were used for pervaporation separation of methanol/methyl tert-butyl ether mixtures. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and laser particle size analysis results show that ZIF-67 is successfully synthesized, and the particle size is mainly between 280 nm and 400 nm. The membranes were characterized by SEM, atomic force microscope (AFM), water contact angle, thermogravimetric analysis (TGA), mechanical property testing and positron annihilation technique (PAT), sorption and swelling experiments, and the pervaporation performance was also investigated. The results reveal that ZIF-67 particles disperse uniformly in the SPES matrix. The roughness and hydrophilicity are enhanced by ZIF-67 exposed on the membrane surface. The mixed matrix membrane has good thermal stability and mechanical properties, which can meet the requirements of pervaporation operation. The introduction of ZIF-67 effectively regulates the free volume parameters of the mixed matrix membrane. With increasing ZIF-67 mass fraction, the cavity radius and free volume fraction increase gradually. When the operating temperature is 40 °C, the flow rate is 50 L·h-1 and the mass fraction of methanol in feed is 15%, the mixed matrix membrane with ZIF-67 mass fraction of 20% shows the best comprehensive pervaporation performance. The total flux and separation factor reach 0.297 kg·m-2·h-1 and 2123, respectively.
Collapse
Affiliation(s)
- Guanglu Han
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jie Lv
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou 450001, China; (J.L.); (M.C.)
| | - Mohan Chen
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou 450001, China; (J.L.); (M.C.)
| |
Collapse
|
2
|
Fabrication of alginate-based multi-crosslinked biomembranes for direct methanol fuel cell application. Carbohydr Polym 2023; 300:120261. [DOI: 10.1016/j.carbpol.2022.120261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
|
3
|
Sardarabadi H, Kiani S, Karkhanechi H, Mousavi SM, Saljoughi E, Matsuyama H. Effect of Nanofillers on Properties and Pervaporation Performance of Nanocomposite Membranes: A Review. MEMBRANES 2022; 12:membranes12121232. [PMID: 36557140 PMCID: PMC9785865 DOI: 10.3390/membranes12121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 05/12/2023]
Abstract
In recent years, a well-known membrane-based process called pervaporation (PV), has attracted remarkable attention due to its advantages for selective separation of a wide variety of liquid mixtures. However, some restrictions of polymeric membranes have led to research studies on developing membranes for efficient separation in the PV process. Recent studies have focused on preparation of nanocomposite membranes as an effective method to improve both selectivity and permeability of polymeric membranes. The present study provides a review of PV nanocomposite membranes for various applications. In this review, recent developments in the field of nanocomposite membranes, including the fabrication methods, characterization, and PV performance, are summarized.
Collapse
Affiliation(s)
- Hamideh Sardarabadi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Shirin Kiani
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Hamed Karkhanechi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Seyed Mahmoud Mousavi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Ehsan Saljoughi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Correspondence:
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
4
|
Coral stone-inspired superwetting membranes with anti-fouling and self-cleaning properties for highly efficient oil-water separation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Zhan X, Zhao X, Ge R, Gao Z, Wang L, Sun X, Li J. Constructing high-efficiency transport pathways via incorporating DP-POSS into PEG membranes for pervaporative desulfurization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Naik ML, Sajjan AM, Yunus Khan TM, M A, Achappa S, Banapurmath NR, Ayachit NH, Abdelmohimen MAH. Fabrication and Characterization of Poly (Vinyl Alcohol)-Chitosan-Capped Silver Nanoparticle Hybrid Membranes for Pervaporation Dehydration of Ethanol. Gels 2022; 8:gels8070401. [PMID: 35877486 PMCID: PMC9321507 DOI: 10.3390/gels8070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
Chitosan-capped silver nanoparticle (CS-capped AgNPs)-incorporated Poly(vinyl alcohol) (PVA) hybrid membranes were prepared by a solution-casting technique for ethanol dehydration via pervaporation. The incorporation of CS-capped AgNPs into the PVA membrane and its influence on membrane properties and pervaporation-separation process of azeotropic water/ethanol mixture was studied. The addition of CS-capped AgNPs into the PVA membrane reduced the crystallinity, thereby increasing the hydrophilicity and swelling degree of the hybrid membrane, supported by contact angle (CA) analyzer and swelling degree experiments, respectively. Fourier transform infrared spectroscopy (FTIR) demonstrated the formation of polymeric matrix between PVA and CS and also the binding of AgNPs onto the functional group of CS and PVA, which was also reflected in the microstructure images demonstrated by scanning electron microscopy (SEM) and by 2θ angle of wide-angle X-ray diffraction (WAXD). The effect of CS-capped AgNPs on the thermal stability of the hybrid membrane was demonstrated by differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). These characteristics of the hybrid membrane positively impact the efficiency of the dehydration of ethanol, as indicated by pervaporation experiments. The best performances in total flux (12.40 ± 0.20 × 10−2 kg/m2 h) and selectivity (3612.33 ± 6.03) at 30 °C were shown for CS-capped AgNPs PVA hybrid membrane containing 2 wt.% CS-capped AgNPs (M-4). This confirms that the developed hybrid membranes can be efficiently used to separate water from azeotropic aqueous ethanol.
Collapse
Affiliation(s)
- Manu L. Naik
- Department of Chemistry, KLE Technological University, Hubballi 580031, India;
| | - Ashok M. Sajjan
- Department of Chemistry, KLE Technological University, Hubballi 580031, India;
- Center for Material Science, KLE Technological University, Hubballi 580031, India; (N.R.B.); (N.H.A.)
- Correspondence: ; Tel.: +91-944-880-1139; Fax: +91-836-237-4985
| | - T. M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (T.M.Y.K.); (M.A.H.A.)
| | - Ashwini M
- AICRP on EAAI (Bioconversion Technology) MARS, University of Agricultural Sciences, Dharwad 580005, India;
| | - Sharanappa Achappa
- Department of Biotechnology, KLE Technological University, Hubballi 580031, India;
| | - Nagaraj R. Banapurmath
- Center for Material Science, KLE Technological University, Hubballi 580031, India; (N.R.B.); (N.H.A.)
| | - Narasimha H. Ayachit
- Center for Material Science, KLE Technological University, Hubballi 580031, India; (N.R.B.); (N.H.A.)
| | - Mostafa A. H. Abdelmohimen
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (T.M.Y.K.); (M.A.H.A.)
- Shoubra Faculty of Engineering, Benha University, Cairo 11629, Egypt
| |
Collapse
|
7
|
Ehsan M, Razzaq H, Razzaque S, Bibi A, Yaqub A. Recent advances in sodium alginate‐based membranes for dehydration of aqueous ethanol through pervaporation. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mehwish Ehsan
- Department of Chemistry University of Wah Wah Cantt Pakistan
| | - Humaira Razzaq
- Department of Chemistry University of Wah Wah Cantt Pakistan
| | - Shumaila Razzaque
- School of Science, Department of Chemistry University of Management and Technology Lahore Pakistan
| | - Aasma Bibi
- Department of Chemistry University of Wah Wah Cantt Pakistan
| | - Azra Yaqub
- Chemistry Division, Directorate of Science Pakistan Institute of Nuclear Science and Technology (PINSTECH), 45650 Pakistan
| |
Collapse
|
8
|
Recent Advances of Pervaporation Separation in DMF/H 2O Solutions: A Review. MEMBRANES 2021; 11:membranes11060455. [PMID: 34203059 PMCID: PMC8234523 DOI: 10.3390/membranes11060455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022]
Abstract
N,N-dimethylformamide (DMF) is a commonly-used solvent in industry and pharmaceutics for extracting acetylene and fabricating polyacrylonitrile fibers. It is also a starting material for a variety of intermediates such as esters, pyrimidines or chlordimeforms. However, after being used, DMF can be form 5–25% spent liquors (mass fraction) that are difficult to recycle with distillation. From the point of view of energy-efficiency and environment-friendliness, an emergent separation technology, pervaporation, is broadly applied in separation of azeotropic mixtures and organic–organic mixtures, dehydration of aqueous–organic mixtures and removal of trace volatile organic compounds from aqueous solutions. Since the advances in membrane technologies to separate N,N-dimethylformamide solutions have been rarely reviewed before, hence this review mainly discusses the research progress about various membranes in separating N,N-dimethylformamide aqueous solutions. The current state of available membranes in industry and academia, and their potential advantages, limitations and applications are also reviewed.
Collapse
|
9
|
Kalahal PB, Kulkarni AS, Sajjan AM, Khan TMY, Anjum Badruddin I, Kamangar S, Banapurmath NR, Ayachit NH, Naik ML, Marakatti VS. Fabrication and Physicochemical Study of B2SA-Grafted Poly(vinyl Alcohol)-Graphene Hybrid Membranes for Dehydration of Bioethanol by Pervaporation. MEMBRANES 2021; 11:110. [PMID: 33557066 PMCID: PMC7913885 DOI: 10.3390/membranes11020110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022]
Abstract
Tetraethylorthosilicate (TEOS)-crosslinked poly(vinyl alcohol) (PVA) solution was prepared and treated with benzaldehyde 2 sulphonic sodium salt acid (B2SA) for sulfonation. Different contents of graphene were incorporated into B2SA-grafted PVA-TEOS hybrid membrane to improve the membrane stability, mechanical strength, and overall pervaporation performance of the membranes. Membranes were fabricated using the casting technique. Developed membranes were then analyzed for their physicochemical changes by means of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM), wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), contact angle analysis (CA), and mechanical strength. The lower d-spacing value observed in WAXD was evidence for the decreased inter-chain distance between the polymer chains. DSC exhibited the enhanced thermal stability of the developed membranes compared to the plane PVA membrane with enhancement in Tg value (106 °C), which was well above the pervaporation experimental temperature. Incorporation of graphene induced higher mechanical strength to the fabricated membranes. Further, the membranes were tested for the pervaporation separation of bioethanol. All the membranes were stable throughout the pervaporation studies, with M-2 G showing the total permeation flux of 11.66 × 10-2 kg/(m2 h) at 30 °C.
Collapse
Affiliation(s)
- Prakash B. Kalahal
- Department of Chemistry, KLE Technological University, Hubballi 580031, India; (P.B.K.); (A.S.K.); (M.L.N.)
| | - Akshay S. Kulkarni
- Department of Chemistry, KLE Technological University, Hubballi 580031, India; (P.B.K.); (A.S.K.); (M.L.N.)
| | - Ashok M. Sajjan
- Department of Chemistry, KLE Technological University, Hubballi 580031, India; (P.B.K.); (A.S.K.); (M.L.N.)
- Center for Material Science, KLE Technological University, Hubballi 580031, India; (N.R.B.); (N.H.A.)
| | - T. M. Yunus Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (T.M.Y.K.); (I.A.B.)
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Irfan Anjum Badruddin
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (T.M.Y.K.); (I.A.B.)
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sarfaraz Kamangar
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Nagaraj R. Banapurmath
- Center for Material Science, KLE Technological University, Hubballi 580031, India; (N.R.B.); (N.H.A.)
| | - Narasimha H. Ayachit
- Center for Material Science, KLE Technological University, Hubballi 580031, India; (N.R.B.); (N.H.A.)
| | - Manu L. Naik
- Department of Chemistry, KLE Technological University, Hubballi 580031, India; (P.B.K.); (A.S.K.); (M.L.N.)
| | - Vijaykumar S. Marakatti
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST) Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
10
|
PEG-POSS Star Molecules Blended in Polyurethane with Flexible Hard Segments: Morphology and Dynamics. Molecules 2020; 26:molecules26010099. [PMID: 33379358 PMCID: PMC7795770 DOI: 10.3390/molecules26010099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/27/2023] Open
Abstract
A star polymer with a polyhedral oligomeric silsesquioxanne (POSS) core and poly(ethylene glycol) (PEG) vertex groups is incorporated in a polyurethane with flexible hard segments in-situ during the polymerization process. The blends are studied in terms of morphology, molecular dynamics, and charge mobility. The methods utilized for this purpose are scanning electron and atomic force microscopies (SEM, AFM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and to a larger extent dielectric relaxation spectroscopy (DRS). It is found that POSS reduces the degree of crystallinity of the hard segments. Contrary to what was observed in a similar system with POSS pendent along the main chain, soft phase calorimetric glass transition temperature drops as a result of plasticization, and homogenization of the soft phase by the star molecules. The dynamic glass transition though, remains practically unaffected, and a hypothesis is formed to resolve the discrepancy, based on the assumption of different thermal and dielectric responses of slow and fast modes of the system. A relaxation α′, slower than the bulky segmental α and common in polyurethanes, appears here too. A detailed analysis of dielectric spectra provides some evidence that this relaxation has cooperative character. An additional relaxation g, which is not commonly observed, accompanies the Maxwell Wagner Sillars interfacial polarization process, and has dynamics similar to it. POSS is found to introduce conductivity and possibly alter its mechanism. The study points out that different architectures of incorporation of POSS in polyurethane affect its physical properties by different mechanisms.
Collapse
|
11
|
Gomes MAG, Pessanha QS, Toledo R, Lube LM, Fernandes C, Horn A. Synthesis and characterization of new polyoctahedral silsesquioxanes containing zinc coordination compounds on the surface. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Preparation and characterization of a novel green silica/PVA membrane for water desalination by pervaporation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116852] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Kulkarni AS, Sajjan AM, M A, Banapurmath NR, Ayachit NH, Shirnalli GG. Novel fabrication of PSSAMA_Na capped silver nanoparticle embedded sodium alginate membranes for pervaporative dehydration of bioethanol. RSC Adv 2020; 10:22645-22655. [PMID: 35514580 PMCID: PMC9054592 DOI: 10.1039/d0ra01951h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022] Open
Abstract
Polystyrene-4-sulfonic acid co maleic acid sodium salt (PSSAMA_Na) capped silver nanoparticle (Ag_Np) embedded sodium alginate (Na-Alg) nanocomposite membranes have been developed to improve the pervaporation (PV) dehydration of bioethanol. The effect of PSSAMA_Na capped Ag_Nps on the micro-morphology, physicochemical properties and separation performance of the derived membranes was analyzed as a function of temperature at the azeotropic composition of the bioethanol–water mixture. WAXD analysis shows a decrease in crystalline domains with the increase in PSSAMA_Na capped Ag_Nps content and confirms the presence of Ag_Nps. DSC analysis demonstrated that the hydrophilic nature enhances as the PSSAMA_Na capped Ag_Nps content increases in the membrane matrix. Further, both total permeation flux and separation selectivity were increased with an increase in PSSAMA_Na capped Ag_Nps content. The results revealed that the membrane with 3 mass% of PSSAMA_Na capped Ag_Nps exhibited the highest permeation flux (13.40 × 10−2 kg m−2 h−1) and separation selectivity (11 406) at 30 °C which indicate its better PV performance. The total permeation flux and permeation flux of water values were close to each other, which confirms that the membranes can be efficiently used to remove the water from azeotropic aqueous bioethanol. Polystyrene-4-sulfonic acid co maleic acid sodium salt (PSSAMA_Na) capped silver nanoparticle (Ag_Np) embedded sodium alginate (Na-Alg) nanocomposite membranes have been developed to improve the pervaporation (PV) dehydration of bioethanol.![]()
Collapse
Affiliation(s)
- Akshay S Kulkarni
- Department of Chemistry, KLE Technological University Hubballi 580031 India
| | - Ashok M Sajjan
- Department of Chemistry, KLE Technological University Hubballi 580031 India
| | - Ashwini M
- Department of Food and Industrial Microbiology, University of Agricultural Sciences Dharwad 580 005 India
| | | | - Narasimha H Ayachit
- Center for Material Science, KLE Technological University Hubballi 580031 India
| | - Geeta G Shirnalli
- Department of Food and Industrial Microbiology, University of Agricultural Sciences Dharwad 580 005 India
| |
Collapse
|
14
|
Hu J, Chen Y, Lu J, Fan X, Li J, Li Z, Zeng G, Liu W. A self-supported gel filter membrane for dye removal with high anti-fouling and water flux performance. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Liu Y, Hu T, Zhao J, Lu L, Muhammad Y, Lan P, He R, Zou Y, Tong Z. Synthesis and application of PDMS/OP-POSS membrane for the pervaporative recovery of n-butyl acetate and ethyl acetate from aqueous media. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
New Trends in Biopolymer-Based Membranes for Pervaporation. Molecules 2019; 24:molecules24193584. [PMID: 31590357 PMCID: PMC6803837 DOI: 10.3390/molecules24193584] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 11/25/2022] Open
Abstract
Biopolymers are currently the most convenient alternative for replacing chemically synthetized polymers in membrane preparation. To date, several biopolymers have been proposed for such purpose, including the ones derived from animal (e.g., polybutylene succinate, polylactic acid, polyhydroxyalcanoates), vegetable sources (e.g., starch, cellulose-based polymers, alginate, polyisoprene), bacterial fermentation products (e.g., collagen, chitin, chitosan) and specific production processes (e.g., sericin). Particularly, these biopolymer-based membranes have been implemented into pervaporation (PV) technology, which assists in the selective separation of azeotropic water-organic, organic-water, organic-organic mixtures, and specific separations of chemical reactions. Thereby, the aim of the present review is to present the current state-of-the-art regarding the different concepts on preparing membranes for PV. Particular attention is paid to the most relevant insights in the field, highlighting the followed strategies by authors for such successful approaches. Finally, by reviewing the ongoing development works, the concluding remarks and future trends are addressed.
Collapse
|
17
|
Jyothi MS, Reddy KR, Soontarapa K, Naveen S, Raghu AV, Kulkarni RV, Suhas DP, Shetti NP, Nadagouda MN, Aminabhavi TM. Membranes for dehydration of alcohols via pervaporation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:415-429. [PMID: 31063879 DOI: 10.1016/j.jenvman.2019.04.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Alcohols are the essential chemicals used in a variety of pharmaceutical and chemical industries. The extreme purity of alcohols in many of such industrial applications is essential. Though distillation is one of the methods used conventionally to purify alcohols, the method consumes more energy and requires carcinogenic entertainers, making the process environmentally toxic. Alternatively, efforts have been made to focus research efforts on alcohol dehydration by the pervaporation (PV) separation technique using polymeric membranes. The present review is focused on alcohol dehydration using PV separation technique, which is the most efficient and benign method of purifying alcohols that are required in fine chemicals synthesis and developing pharmaceutical formulations. This review will discuss about the latest developments in the area of PV technique used in alcohol dehydration using a variety of novel membranes.
Collapse
Affiliation(s)
- M S Jyothi
- Department of Chemical Technology, Faculty of Sciences, & Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 10330, Thailand
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - K Soontarapa
- Department of Chemical Technology, Faculty of Sciences, & Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 10330, Thailand
| | - S Naveen
- Department of Basic Sciences, Center for Emerging Technology, SET, JAIN Deemed to be University, Bangalore 562 112, India
| | - Anjanapura V Raghu
- Department of Basic Sciences, Center for Emerging Technology, SET, JAIN Deemed to be University, Bangalore 562 112, India.
| | - Raghavendra V Kulkarni
- Department of Pharmaceutics, BLDEA's SSM College of Pharmacy and Research Centre, Vijayapur, 586 103, Karnataka, India
| | - D P Suhas
- Department of Chemistry, St. Joseph's College, Langford Road, Bangalore, 560027, India
| | - Nagaraj P Shetti
- Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi, 580030, India
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
18
|
Swapna VP, Nambissan PMG, Thomas SP, Vayyaprontavida Kaliyathan A, Jose T, George SC, Thomas S, Stephen R. Free volume defects and transport properties of mechanically stable polyhedral oligomeric silsesquioxane embedded poly(vinyl alcohol)‐poly(ethylene oxide) blend membranes. POLYM INT 2019. [DOI: 10.1002/pi.5815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Selvin P Thomas
- Chemical Engineering Technology Department, Yanbu Industrial College and Advanced Materials Laboratory, Yanbu Research CenterRoyal Commission Yanbu Colleges and Institutes (RCYCI) Yanbu Kingdom of Saudi Arabia
| | - Abitha Vayyaprontavida Kaliyathan
- School of Chemical Sciences and International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN)Mahatma Gandhi University Kottayam India
| | - Thomasukutty Jose
- Centre for Nano Science and Technology, Department of Basic SciencesAmal Jyothi College of Engineering Kanjirapally India
| | - Soney C George
- Centre for Nano Science and Technology, Department of Basic SciencesAmal Jyothi College of Engineering Kanjirapally India
| | - Sabu Thomas
- School of Chemical Sciences and International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN)Mahatma Gandhi University Kottayam India
| | - Ranimol Stephen
- Department of ChemistrySt Joseph's College (Autonomous) Calicut India
| |
Collapse
|
19
|
Tong Z, Liu X, Zhang B. Synthesis of sphere-like polyelectrolyte complexes and their homogeneous membranes for enhanced pervaporation performances in ethanol dehydration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
|
21
|
Cheng C, Li P, Zhang T, Wang X, Hsiao BS. Enhanced pervaporation performance of polyamide membrane with synergistic effect of porous nanofibrous support and trace graphene oxide lamellae. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Chen X, Porto CL, Chen Z, Merenda A, Allioux FM, d'Agostino R, Magniez K, Dai XJ, Palumbo F, Dumée LF. Single step synthesis of Janus nano-composite membranes by atmospheric aerosol plasma polymerization for solvents separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:22-33. [PMID: 30015115 DOI: 10.1016/j.scitotenv.2018.06.343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Solvent permeation across membranes is limited due to physical resistance to diffusion from the selective layer within the membrane and to plasticizing effects generated by the solvent molecules onto the polymeric macromolecular matrix. Nano-composite thin film membranes provide promising routes to generate controlled microstructural separation materials with higher selectivities and permeabilities. Here, the fabrication of nano-composite based on octamethyl-polyhedral oligomeric silsesquioxane - hexamethyldisiloxane thin film membranes is demonstrated by aerosol assisted atmospheric plasma deposition onto pre-formed nano-porous membrane supports for the first time. Stable, atomically smooth and continuous solid films with controllable thickness down to 50 nm were achieved. The deposition process allowed for the control of the wettability of the surfaces to water and organic solvents, leading to the generation of hydrophobic but alcohol-philic surfaces. The liquid entry pressure of the films to water was found to be 8 bar from plasma polymerization as oppose to 3 bar for the bare nano-porous support only. In addition, the ideal separation selectivity for ethanol to water, up to 6.5, highlight the impact of both the surface energy and level of cross-linking of the hexamethyldisiloxane nanostructures on the diffusion mechanisms. This new atmospheric plasma deposition strategy opens-up cost-effective and environmentally friendly routes for the design of the smart Janus membrane with customizable properties and performance.
Collapse
Affiliation(s)
- Xiao Chen
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds 3216, VIC, Australia.
| | - Chiara Lo Porto
- Department of Chemistry, University of Bari, via E. Orabona 4, 70126 Bari, Italy
| | - Zhiqiang Chen
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds 3216, VIC, Australia
| | - Andrea Merenda
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds 3216, VIC, Australia
| | - François-Marie Allioux
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds 3216, VIC, Australia
| | - Riccardo d'Agostino
- Department of Chemistry, University of Bari, via E. Orabona 4, 70126 Bari, Italy
| | - Kevin Magniez
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds 3216, VIC, Australia
| | - Xiujuan J Dai
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds 3216, VIC, Australia
| | - Fabio Palumbo
- Institute of Nanotechnology, CNR, via E. Orabona 4, 70126 Bari, Italy
| | - Ludovic F Dumée
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds 3216, VIC, Australia.
| |
Collapse
|
23
|
Wang M, Pan F, Yang L, Song Y, Wu H, Cheng X, Liu G, Yang H, Wang H, Jiang Z, Cao X. Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Development and characterisation of hybrid polysaccharide membranes for dehydration processes. Carbohydr Polym 2018; 191:216-224. [DOI: 10.1016/j.carbpol.2018.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 11/21/2022]
|
25
|
Cheng X, Jiang Z, Cheng X, Yang H, Tang L, Liu G, Wang M, Wu H, Pan F, Cao X. Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
|
27
|
Synthesis of mesoporous SiO 2 xerogel/chitosan mixed-matrix membranes for butanol dehydration. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Cheng X, Pan F, Wang M, Li W, Song Y, Liu G, Yang H, Gao B, Wu H, Jiang Z. Hybrid membranes for pervaporation separations. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.07.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Yang H, Wang Z, Lan Q, Wang Y. Antifouling ultrafiltration membranes by selective swelling of polystyrene/poly(ethylene oxide) block copolymers. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|