1
|
Elozeiri AAE, Dykstra JE, Lammertink RGH, Rijnaarts HHM. Current Direction Regulates Ion Transport Across Layer-by-Layer One-Side-Coated Ion-Exchange Membranes in Electrodialysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22004-22013. [PMID: 40159084 PMCID: PMC11986911 DOI: 10.1021/acsami.5c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Polyelectrolyte multilayer (PEM) modified membranes can attain selective ion separations in electrodialysis with several potential applications, such as sustainable brine management. To understand the ion transport across PEM-coated membranes, we coated six different commercial cation-exchange membranes (CEMs) with PEM via the layer-by-layer technique. Coating one side of the membrane with a PEM leads to an asymmetric current-voltage response in case of solutions containing Mg2+ and Ca2+ ions. When the coating faces the counterion transport direction (FT), the coated membrane reaches a limiting current density which does not occur if the applied current is reversed. We investigated these phenomena via several electrochemical techniques. After coating, the total membrane resistance increases significantly at solutions of Mg2+ or Ca2+ (relative to the bare membrane resistance). Furthermore, the transport characteristics of the PEM coating are highly influenced by the base membrane resistance and fixed-charge density. Regarding the counterion type, the resistance of the coated membrane increases in the same order as the bare membrane: K+ < Na+< Ca2+ < Mg2+. The higher the bare membrane resistance is, the higher the PEM resistance is. The co-ion valency (i.e., monovalent Cl- or divalent SO42-) had limited to insignificant effects on the current-voltage response of the coated membranes. Therefore, dielectric exclusion is insignificant for these coated membranes at the tested concentrations, i.e., 0.25 M SO42-. Lastly, we employed an ion transport model to explain the observed effect of the current direction on the current-voltage response and analyze the effective properties of the PEM coating.
Collapse
Affiliation(s)
- Alaaeldin A. E. Elozeiri
- Environmental
Technology, Wageningen University &
Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Jouke E. Dykstra
- Environmental
Technology, Wageningen University &
Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Rob G. H. Lammertink
- Membrane
Science and Technology, Faculty of Science and Technology (TNW), University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Huub H. M. Rijnaarts
- Environmental
Technology, Wageningen University &
Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
2
|
Xiang W, Wang X, Zhang M, Aderibigbe AD, Wang F, Zhao Z, Fan Y, Huey BD, McCutcheon JR, Li B. Continuous Monitoring of Lithium Ions in Lithium-Rich Brine Using Ion Selective Electrode Sensors Modified with Polyelectrolyte Multilayers of Poly(allylamine hydrochloride)/Poly(sodium 4-styrenesulfonate). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22442-22455. [PMID: 39626215 DOI: 10.1021/acs.est.4c07155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Monitoring lithium ions (Li+) in lithium-rich brine (LrB) is critical for metal recovery, yet challenges such as high ionic strength and gypsum-induced surface deterioration hinder the performance of potentiometric ion-selective electrode (ISE) sensors. This study advances the functionality of Li+ ISE sensors and enables continuous monitoring of Li+ concentration in LrB by introducing apolyelectrolyte multilayer (PEM) of poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) (PAH/PSS) that serves as an antigypsum scaling material to minimize nucleation on the sensor surface. With 5.5 bilayers of PAH/PSS coating, the Li+ ISE sensors possess a high Nernst slope (59.14 mV/dec), rapid response (<10 s), and superior selectivity against competitive ions (Na+, log Ks = -2.35; K+, log Ks = -2.47; Ca2+, log Ks = -4.05; Mg2+, log Ks = -4.18). The impedance (85.1 kΩ) of (PAH/PSS)5.5-coated sensors is 1 order of magnitude lower than that of electrospray ion-selective membrane (E-ISM) Li+ sensors (830 kΩ), attributed to the ultrathin (45.3 nm) and highly dielectric PAH/PSS bilayers. During a 15-day continuous monitoring test in LrB, the (PAH/PSS)5.5-coated Li+ ISE sensors with their superhydrophilic and smooth surface diminish nucleation sites for scaling agents (e.g., Ca2+ and SO42-) and consequently mitigate gypsum scaling. Moreover, a brine-tailored denoising data processing algorithm (bt-DDPA), coupled with the salinity-adjusted mathematical model with Lagrange interpolation, effectively captures Li+ fluctuation by filtering out anomalies and reducing sensor drift in brine. Bt-DDPA alleviates the discrepancy between the sensor readings and the lab-based validation results by 46.06%. This study demonstrates that the integration of material advancement (PAH/PSS coating) with sensor data processing (bt-DDPA) bolsters continuous and accurate Li+ monitoring in LrB, crucial for brine water treatment and resource recovery.
Collapse
Affiliation(s)
- Wenjun Xiang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xingyu Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mi Zhang
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Abiodun D Aderibigbe
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Fei Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zhiyuan Zhao
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yingzheng Fan
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Bryan D Huey
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jeffrey R McCutcheon
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
3
|
Tekinalp Ö, Zimmermann P, Holdcroft S, Burheim OS, Deng L. Cation Exchange Membranes and Process Optimizations in Electrodialysis for Selective Metal Separation: A Review. MEMBRANES 2023; 13:566. [PMID: 37367770 DOI: 10.3390/membranes13060566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
The selective separation of metal species from various sources is highly desirable in applications such as hydrometallurgy, water treatment, and energy production but also challenging. Monovalent cation exchange membranes (CEMs) show a great potential to selectively separate one metal ion over others of the same or different valences from various effluents in electrodialysis. Selectivity among metal cations is influenced by both the inherent properties of membranes and the design and operating conditions of the electrodialysis process. The research progress and recent advances in membrane development and the implication of the electrodialysis systems on counter-ion selectivity are extensively reviewed in this work, focusing on both structure-property relationships of CEM materials and influences of process conditions and mass transport characteristics of target ions. Key membrane properties, such as charge density, water uptake, and polymer morphology, and strategies for enhancing ion selectivity are discussed. The implications of the boundary layer at the membrane surface are elucidated, where differences in the mass transport of ions at interfaces can be exploited to manipulate the transport ratio of competing counter-ions. Based on the progress, possible future R&D directions are also proposed.
Collapse
Affiliation(s)
- Önder Tekinalp
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Pauline Zimmermann
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Steven Holdcroft
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Odne Stokke Burheim
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
4
|
Ahmad M, Ahmed M. Characterization and applications of ion-exchange membranes and selective ion transport through them: a review. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
5
|
Tao L, Wang X, Wu F, Wang B, Gao C, Gao X. Highly efficient Li+/Mg2+ separation of monovalent cation permselective membrane enhanced by 2D metal organic framework nanosheets. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Ding D, Yaroshchuk A, Bruening ML. Electrodialysis through nafion membranes coated with polyelectrolyte multilayers yields >99% pure monovalent ions at high recoveries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Kozmai A, Pismenskaya N, Nikonenko V. Mathematical Description of the Increase in Selectivity of an Anion-Exchange Membrane Due to Its Modification with a Perfluorosulfonated Ionomer. Int J Mol Sci 2022; 23:ijms23042238. [PMID: 35216352 PMCID: PMC8877549 DOI: 10.3390/ijms23042238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
In this paper, we simulate the changes in the structure and transport properties of an anion-exchange membrane (CJMA-7, Hefei Chemjoy Polymer Materials Co. Ltd., China) caused by its modification with a perfluorosulfonated ionomer (PFSI). The modification was made in several stages and included keeping the membrane at a low temperature, applying a PFSI solution on its surface, and, subsequently, drying it at an elevated temperature. We applied the known microheterogeneous model with some new amendments to simulate each stage of the membrane modification. It has been shown that the PFSI film formed on the membrane-substrate does not affect significantly its properties due to the small thickness of the film (≈4 µm) and similar properties of the film and substrate. The main effect is caused by the fact that PFSI material “clogs” the macropores of the CJMA-7 membrane, thereby, blocking the transport of coions through the membrane. In this case, the membrane microporous gel phase, which exhibits a high selectivity to counterions, remains the primary pathway for both counterions and coions. Due to the above modification of the CJMA-7 membrane, the coion (Na+) transport number in the membrane equilibrated with 1 M NaCl solution decreased from 0.11 to 0.03. Thus, the modified membrane became comparable in its transport characteristics with more expensive IEMs available on the market.
Collapse
|
8
|
|
9
|
Evdochenko E, Kamp J, Dunkel R, Nikonenko V, Wessling M. Charge distribution in polyelectrolyte multilayer nanofiltration membranes affects ion separation and scaling propensity. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Effects of inorganic ions on the transfer of weak organic acids and their salts in electrodialysis process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Liang Y, Gao F, Wang L, Lin S. In-situ monitoring of polyelectrolytes adsorption kinetics by electrochemical impedance spectroscopy: Application in fabricating nanofiltration membranes via layer-by-layer deposition. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Pan XH, Zu JH. A highly hydrophilic cation exchange nonwoven with a further modifiable epoxy group prepared by radiation-induced graft polymerization. Polym Chem 2021. [DOI: 10.1039/d1py00866h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel cation exchange nonwoven PP-g-SSS/GMA containing epoxy and sulfonic groups was successfully prepared via radiation-induced simultaneous grafting polymerization by attaching GMA and SSS monomers onto PP nonwoven.
Collapse
Affiliation(s)
- Xiao-han Pan
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-hua Zu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Ahmad M, Yaroshchuk A, Bruening ML. Moderate pH changes alter the fluxes, selectivities and limiting currents in ion transport through polyelectrolyte multilayers deposited on membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Affiliation(s)
- Chao Tang
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA
| | - Merlin L. Bruening
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame Indiana USA
| |
Collapse
|
15
|
Butylskii D, Skolotneva E, Mareev S, Gorobchenko A, Urtenov M, Nikonenko V. Examination of the equations for calculation of chronopotentiometric transition time in membrane systems. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Sahin S, Dykstra JE, Zuilhof H, Zornitta RL, de Smet LC. Modification of Cation-Exchange Membranes with Polyelectrolyte Multilayers to Tune Ion Selectivity in Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34746-34754. [PMID: 32589009 PMCID: PMC7404204 DOI: 10.1021/acsami.0c05664] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/26/2020] [Indexed: 05/22/2023]
Abstract
Capacitive deionization (CDI) is a desalination technique that can be applied for the separation of target ions from water streams. For instance, mono- and divalent cation selectivities were studied by other research groups in the context of water softening. Another focus is on removing Na+ from recirculated irrigation water (IW) in greenhouses, aiming to maintain nutrients. This is important as an excess of Na+ has toxic effects on plant growth by decreasing the uptake of other nutrients. In this study, we investigated the selective separation of sodium (Na+) and magnesium (Mg2+) in MCDI using a polyelectrolyte multilayer (PEM) on a standard grade cation-exchange membrane (Neosepta, CMX). Alternating layers of poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) were coated on a CMX membrane (CMX-PEM) using the layer-by-layer (LbL) technique. The layer formation was examined with X-ray photoelectron spectroscopy (XPS) and static water contact angle measurements (SWA) for each layer. For each membrane, i.e., the CMX-PEM membrane, CMX membrane, and for a special-grade cation-exchange membrane (Neosepta, CIMS), the Na+/Mg2+ selectivity was investigated by performing MCDI experiments, and selectivity values of 2.8 ± 0.2, 0.5 ± 0.04, and 0.4 ± 0.1 were found, respectively, over up to 40 cycles. These selectivity values indicate flexible switching from a Mg2+-selective membrane to a Na+-selective membrane by straightforward modification with a PEM. We anticipate that our modular functionalization method may facilitate the further development of ion-selective membranes and electrodes.
Collapse
Affiliation(s)
- Sevil Sahin
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jouke E. Dykstra
- Environmental
Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Department
of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rafael L. Zornitta
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- . Tel: +31-317484810
| | - Louis C.P.M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- . Tel: +31-317481268
| |
Collapse
|
17
|
Stenina I, Golubenko D, Nikonenko V, Yaroslavtsev A. Selectivity of Transport Processes in Ion-Exchange Membranes: Relationship with the Structure and Methods for Its Improvement. Int J Mol Sci 2020; 21:E5517. [PMID: 32752236 PMCID: PMC7432390 DOI: 10.3390/ijms21155517] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
Nowadays, ion-exchange membranes have numerous applications in water desalination, electrolysis, chemistry, food, health, energy, environment and other fields. All of these applications require high selectivity of ion transfer, i.e., high membrane permselectivity. The transport properties of ion-exchange membranes are determined by their structure, composition and preparation method. For various applications, the selectivity of transfer processes can be characterized by different parameters, for example, by the transport number of counterions (permselectivity in electrodialysis) or by the ratio of ionic conductivity to the permeability of some gases (crossover in fuel cells). However, in most cases there is a correlation: the higher the flux density of the target component through the membrane, the lower the selectivity of the process. This correlation has two aspects: first, it follows from the membrane material properties, often expressed as the trade-off between membrane permeability and permselectivity; and, second, it is due to the concentration polarization phenomenon, which increases with an increase in the applied driving force. In this review, both aspects are considered. Recent research and progress in the membrane selectivity improvement, mainly including a number of approaches as crosslinking, nanoparticle doping, surface modification, and the use of special synthetic methods (e.g., synthesis of grafted membranes or membranes with a fairly rigid three-dimensional matrix) are summarized. These approaches are promising for the ion-exchange membranes synthesis for electrodialysis, alternative energy, and the valuable component extraction from natural or waste-water. Perspectives on future development in this research field are also discussed.
Collapse
Affiliation(s)
- Irina Stenina
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| | - Daniel Golubenko
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| |
Collapse
|
18
|
Luo H, Agata WAS, Geise GM. Connecting the Ion Separation Factor to the Sorption and Diffusion Selectivity of Ion Exchange Membranes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02457] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hongxi Luo
- Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, P.O.
Box 400741, Charlottesville, Virginia 22904, United States
| | - Wendy-Angela Saringi Agata
- Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, P.O.
Box 400741, Charlottesville, Virginia 22904, United States
| | - Geoffrey M. Geise
- Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, P.O.
Box 400741, Charlottesville, Virginia 22904, United States
| |
Collapse
|
19
|
|
20
|
Rybalkina O, Tsygurina K, Melnikova E, Mareev S, Moroz I, Nikonenko V, Pismenskaya N. Partial Fluxes of Phosphoric Acid Anions through Anion-Exchange Membranes in the Course of NaH 2PO 4 Solution Electrodialysis. Int J Mol Sci 2019; 20:E3593. [PMID: 31340475 PMCID: PMC6678999 DOI: 10.3390/ijms20143593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/23/2022] Open
Abstract
Electrodialysis (ED) with ion-exchange membranes is a promising method for the extraction of phosphates from municipal and other wastewater in order to obtain cheap mineral fertilizers. Phosphorus is transported through an anion-exchange membrane (AEM) by anions of phosphoric acid. However, which phosphoric acid anions carry the phosphorus in the membrane and the boundary solution, that is, the mechanism of phosphorus transport, is not yet clear. Some authors report an unexpectedly low current efficiency of this process and high energy consumption. In this paper, we report the partial currents of H2PO4-, HPO42-, and PO43- through Neosepta AMX and Fujifilm AEM Type X membranes, as well as the partial currents of H2PO4- and H+ ions through a depleted diffusion layer of a 0.02 M NaH2PO4 feed solution measured as functions of the applied potential difference across the membrane under study. It was shown that the fraction of the current transported by anions through AEMs depend on the total current density/potential difference. This was due to the fact that the pH of the internal solution in the membrane increases with the growing current due to the increasing concentration polarization (a lower electrolyte concentration at the membrane surface leads to higher pH shift in the membrane). The HPO42- ions contributed to the charge transfer even when a low current passed through the membrane; with an increasing current, the contribution of the HPO42- ions grew, and when the current was about 2.5 ilimLev (ilimLev was the theoretical limiting current density), the PO43- ions started to carry the charge through the membrane. However, in the feed solution, the pH was 4.6 and only H2PO4- ions were present. When H2PO4- ions entered the membrane, a part of them transformed into doubly and triply charged anions; the H+ ions were released in this transformation and returned to the depleted diffusion layer. Thus, the phosphorus total flux, jP (equal to the sum of the fluxes of all phosphorus-bearing species) was limited by the H2PO4- transport from the bulk of feed solution to the membrane surface. The value of jP was close to ilimLev/F (F is the Faraday constant). A slight excess of jP over ilimLev/F was observed, which is due to the electroconvection and exaltation effects. The visualization showed that electroconvection in the studied systems was essentially weaker than in systems with strong electrolytes, such as NaCl.
Collapse
Affiliation(s)
- Olesya Rybalkina
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Kseniya Tsygurina
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | | | - Semyon Mareev
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Ilya Moroz
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia.
| | | |
Collapse
|
21
|
Sarapulova V, Shkorkina I, Mareev S, Pismenskaya N, Kononenko N, Larchet C, Dammak L, Nikonenko V. Transport Characteristics of Fujifilm Ion-Exchange Membranes as Compared to Homogeneous Membranes АМХ and СМХ and to Heterogeneous Membranes MK-40 and MA-41. MEMBRANES 2019; 9:E84. [PMID: 31337131 PMCID: PMC6680501 DOI: 10.3390/membranes9070084] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022]
Abstract
Ion-exchange membranes (IEMs) find more and more applications; the success of an application depends on the properties of the membranes selected for its realization. For the first time, the results of a comprehensive characterization of the transport properties of IEMs from three manufactures (Astom, Japan; Shchekinoazot, Russia; and Fujifilm, The Netherlands) are reported. Our own and literature data are presented and analyzed using the microheterogeneous model. Homogeneous Neosepta AMX and CMX (Astom), heterogeneous MA-41 and MK-40 (Shchekinoazot), and AEM Type-I, AEM Type-II, AEM Type-X, as well as CEM Type-I, CEM Type-II, and CEM Type-X produced by the electrospinning method (Fujifim) were studied. The concentration dependencies of the conductivity, diffusion permeability, as well as the real and apparent ion transport numbers in these membranes were measured. The counterion transport number characterizing the membrane permselectivity increases in the following order: CEM Type-I ≅ MA-41 < AEM Type-I < MK-40 < CMX ≅ CEM Type-II ≅ CEM Type-X ≅ AEM Type-II < AMX < AEM Type-X. It is shown that the properties of the AEM Type-I and CEM Type-I membranes are close to those of the heterogeneous MA-41 and MK-40 membranes, while the properties of Fujifilm Type-II and Type-X membranes are close to those of the homogeneous AMX and CMX membranes. This difference is related to the fact that the Type-I membranes have a relatively high parameter f2, the volume fraction of the electroneutral solution filling the intergel spaces. This high value is apparently due to the open-ended pores, formed by the reinforcing fabric filaments of the Type-I membranes, which protrude above the surface of these membranes.
Collapse
Affiliation(s)
- Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Inna Shkorkina
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Semyon Mareev
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia.
| | - Natalia Kononenko
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Christian Larchet
- Institut de Chimie et des Matériaux Paris-Est, UMR7182 CNRS-Université Paris-Est, 2 rue Henri Dunant, 94320 Thiais, France
| | - Lasaad Dammak
- Institut de Chimie et des Matériaux Paris-Est, UMR7182 CNRS-Université Paris-Est, 2 rue Henri Dunant, 94320 Thiais, France
| | - Victor Nikonenko
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| |
Collapse
|
22
|
Evaluation of the ideal selectivity and the performance of selectrodialysis by using TFC ion exchange membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Layer-by-layer modification of aliphatic polyamide anion-exchange membranes to increase Cl−/SO42− selectivity. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Rijnaarts T, Reurink DM, Radmanesh F, de Vos WM, Nijmeijer K. Layer-by-layer coatings on ion exchange membranes: Effect of multilayer charge and hydration on monovalent ion selectivities. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Radmanesh F, Rijnaarts T, Moheb A, Sadeghi M, de Vos WM. Enhanced selectivity and performance of heterogeneous cation exchange membranes through addition of sulfonated and protonated Montmorillonite. J Colloid Interface Sci 2019; 533:658-670. [DOI: 10.1016/j.jcis.2018.08.100] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
|
26
|
Yang L, Tang C, Ahmad M, Yaroshchuk A, Bruening ML. High Selectivities among Monovalent Cations in Dialysis through Cation-Exchange Membranes Coated with Polyelectrolyte Multilayers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44134-44143. [PMID: 30433759 DOI: 10.1021/acsami.8b16434] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cation-exchange membranes allow preferential passage of cations over anions, but they show minimal selectivity among cations, which limits their use in ion separations. Recent studies show that modification of cation-exchange membranes with polyelectrolyte multilayers leads to exceptional monovalent/divalent cation electrodialysis selectivities, but no studies report high selectivity among monovalent ions. This work demonstrates that adsorption of protonated poly(allylamine) (PAH)/poly(4-styrenesulfonate) (PSS) multilayers on Nafion membranes leads to high K+/Li+ selectivities in Donnan dialysis, where K+ and Li+ ions in a source phase pass through the membrane and exchange with Na+ ions in a receiving phase. Addition of 0.01 M HNO3 to a source phase containing 0.01 M KNO3 and 0.01 M LiNO3 increases the K+/Li+ selectivity from 8 to ∼60 through (PAH/PSS)5PAH-coated Nafion membranes, primarily because of a ≥fivefold increase in K+ flux. These selectivities are much larger than the ratio of 1.9 for the aqueous diffusion coefficients of K+ and Li+, and uncoated Nafion membranes give a K+/Li+ selectivity <3. Bi-ionic transmembrane potential measurements at neutral pH confirm that the membrane is more permeable to K+ than Li+, but this selectivity is less than in Donnan dialysis with acidic solutions. In situ ellipsometry data indicate that PAH/PSS multilayers (assembled at pH 2.3, 7.5, or 9.3) swell at pH 2.0, and this swelling may open cation-exchange sites that preferentially bind K+ to enable highly selective transport. The coated membranes also exhibit modest selectivity for K+ over H+, suggesting selective transport based on preferential partitioning of K+ into the coatings. Selectivity declines when increasing the source-phase KNO3 concentration to 0.1 M, perhaps because the discriminating transport pathway saturates. Moreover, selectivities are lower in electrodialysis than in Donnan dialysis, presumably because electrodialysis engages other transport mechanisms, such as electroosmosis and strong electromigration.
Collapse
Affiliation(s)
| | | | | | - Andriy Yaroshchuk
- ICREA , pg.L.Companys 23 , 08010 Barcelona , Spain
- Department of Chemical Engineering , Polytechnic University of Catalonia , av. Diagonal 647 , 08028 Barcelona , Spain
| | | |
Collapse
|
27
|
Paltrinieri L, Poltorak L, Chu L, Puts T, van Baak W, Sudhölter EJ, de Smet LC. Hybrid polyelectrolyte-anion exchange membrane and its interaction with phosphate. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Wang X, Lin H, Qu X, Zheng H, Sui J, Cao L. The effect of fish matrix on colloidal gold immunochromatographic assay of antibiotics: the source of interference and removal method. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1483900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Xiaoxiao Wang
- Food Safety Laboratory, Ocean University of China, Qingdao, People’s Republic of China
| | - Hong Lin
- Food Safety Laboratory, Ocean University of China, Qingdao, People’s Republic of China
| | - Xueli Qu
- Food Safety Laboratory, Ocean University of China, Qingdao, People’s Republic of China
| | - Hongwei Zheng
- Food Safety Laboratory, Ocean University of China, Qingdao, People’s Republic of China
| | - Jianxin Sui
- Food Safety Laboratory, Ocean University of China, Qingdao, People’s Republic of China
| | - Limin Cao
- Food Safety Laboratory, Ocean University of China, Qingdao, People’s Republic of China
| |
Collapse
|
29
|
Miao YM, Jia YX, Guo RQ, Wang M. Heterogeneous anion-exchange membrane: Influences of charged binders with crosslinking structure on electrodialytic performance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
|