1
|
Aytaç E, Khanzada NK, Ibrahim Y, Khayet M, Hilal N. Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches. MEMBRANES 2024; 14:259. [PMID: 39728709 DOI: 10.3390/membranes14120259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Membrane engineering is a complex field involving the development of the most suitable membrane process for specific purposes and dealing with the design and operation of membrane technologies. This study analyzed 1424 articles on reverse osmosis (RO) membrane engineering from the Scopus database to provide guidance for future studies. The results show that since the first article was published in 1964, the domain has gained popularity, especially since 2009. Thin-film composite (TFC) polymeric material has been the primary focus of RO membrane experts, with 550 articles published on this topic. The use of nanomaterials and polymers in membrane engineering is also high, with 821 articles. Common problems such as fouling, biofouling, and scaling have been the center of work dedication, with 324 articles published on these issues. Wang J. is the leader in the number of published articles (73), while Gao C. is the leader in other metrics. Journal of Membrane Science is the most preferred source for the publication of RO membrane engineering and related technologies. Author social networks analysis shows that there are five core clusters, and the dominant cluster have 4 researchers. The analysis of sentiment, subjectivity, and emotion indicates that abstracts are positively perceived, objectively written, and emotionally neutral.
Collapse
Affiliation(s)
- Ersin Aytaç
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Türkiye
| | - Noman Khalid Khanzada
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
| | - Yazan Ibrahim
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
- Chemical and Biomolecular Engineering Division, New York University, Brooklyn, NY 11201, USA
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com N° 2, 28805 Madrid, Spain
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
2
|
Sarkar P, Wu C, Yang Z, Tang CY. Empowering ultrathin polyamide membranes at the water-energy nexus: strategies, limitations, and future perspectives. Chem Soc Rev 2024; 53:4374-4399. [PMID: 38529541 DOI: 10.1039/d3cs00803g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Membrane-based separation is one of the most energy-efficient methods to meet the growing need for a significant amount of fresh water. It is also well-known for its applications in water treatment, desalination, solvent recycling, and environmental remediation. Most typical membranes used for separation-based applications are thin-film composite membranes created using polymers, featuring a top selective layer generated by employing the interfacial polymerization technique at an aqueous-organic interface. In the last decade, various manufacturing techniques have been developed in order to create high-specification membranes. Among them, the creation of ultrathin polyamide membranes has shown enormous potential for achieving a significant increase in the water permeation rate, translating into major energy savings in various applications. However, this great potential of ultrathin membranes is greatly hindered by undesired transport phenomena such as the geometry-induced "funnel effect" arising from the substrate membrane, severely limiting the actual permeation rate. As a result, the separation capability of ultrathin membranes is still not fully unleashed or understood, and a critical assessment of their limitations and potential solutions for future studies is still lacking. Here, we provide a summary of the latest developments in the design of ultrathin polyamide membranes, which have been achieved by controlling the interfacial polymerization process and utilizing a number of novel manufacturing processes for ionic and molecular separations. Next, an overview of the in-depth assessment of their limitations resulting from the substrate membrane, along with potential solutions and future perspectives will be covered in this review.
Collapse
Affiliation(s)
- Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
3
|
Yu S, Li C, Zhao S, Chai M, Hou J, Lin R. Recent advances in the interfacial engineering of MOF-based mixed matrix membranes for gas separation. NANOSCALE 2024; 16:7716-7733. [PMID: 38536054 DOI: 10.1039/d4nr00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The membrane process stands as a promising and transformative technology for efficient gas separation due to its high energy efficiency, operational simplicity, low environmental impact, and easy up-and-down scaling. Metal-organic framework (MOF)-polymer mixed matrix membranes (MMMs) combine MOFs' superior gas-separation performance with polymers' processing versatility, offering the opportunity to address the limitations of pure polymer or inorganic membranes for large-scale integration. However, the incompatibility between the rigid MOFs and flexible polymer chains poses a challenge in MOF MMM fabrication, which can cause issues such as MOF agglomeration, sedimentation, and interfacial defects, substantially weakening membrane separation efficiency and mechanical properties, particularly gas separation. This review focuses on engineering MMMs' interfaces, detailing recent strategies for reducing interfacial defects, improving MOF dispersion, and enhancing MOF loading. Advanced characterisation techniques for understanding membrane properties, specifically the MOF-polymer interface, are outlined. Lastly, it explores the remaining challenges in MMM research and outlines potential future research directions.
Collapse
Affiliation(s)
- Shuwen Yu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Conger Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shuke Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
4
|
Shen Q, Song Q, Mai Z, Lee KR, Yoshioka T, Guan K, Gonzales RR, Matsuyama H. When self-assembly meets interfacial polymerization. SCIENCE ADVANCES 2023; 9:eadf6122. [PMID: 37134177 PMCID: PMC10156122 DOI: 10.1126/sciadv.adf6122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
Interfacial polymerization (IP) and self-assembly are two thermodynamically different processes involving an interface in their systems. When the two systems are incorporated, the interface will exhibit extraordinary characteristics and generate structural and morphological transformation. In this work, an ultrapermeable polyamide (PA) reverse osmosis (RO) membrane with crumpled surface morphology and enlarged free volume was fabricated via IP reaction with the introduction of self-assembled surfactant micellar system. The mechanisms of the formation of crumpled nanostructures were elucidated via multiscale simulations. The electrostatic interactions among m-phenylenediamine (MPD) molecules, surfactant monolayer and micelles, lead to disruption of the monolayer at the interface, which in turn shapes the initial pattern formation of the PA layer. The interfacial instability brought about by these molecular interactions promotes the formation of crumpled PA layer with larger effective surface area, facilitating the enhanced water transport. This work provides valuable insights into the mechanisms of the IP process and is fundamental for exploring high-performance desalination membranes.
Collapse
Affiliation(s)
- Qin Shen
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Qiangqiang Song
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Ralph Rolly Gonzales
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
5
|
Zhou S, Zhou Y, He J, Lai Y, Li Y, Yan W, Zhou Y, Gao C. Generation of Nano-Bubbles by NaHCO 3 for Improving the FO Membrane Performance. MEMBRANES 2023; 13:404. [PMID: 37103831 PMCID: PMC10143354 DOI: 10.3390/membranes13040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Thin-film composite (TFC) polyamide membranes have a wide range of applications in forward osmosis, but tuning the water flux remains a significant challenge due to concentration polarization. The generation of nano-sized voids within the polyamide rejection layer can change the roughness of the membrane. In this experiment, the micro-nano structure of the PA rejection layer was adjusted by adding sodium bicarbonate to the aqueous phase to generate nano-bubbles, and the changes of its roughness with the addition of sodium bicarbonate were systematically demonstrated. With the enhanced nano-bubbles, more and more blade-like and band-like features appeared on the PA layer, which could effectively reduce the reverse solute flux of the PA layer and improve the salt rejection of the FO membrane. The increase in roughness raised the area of the membrane surface, which led to a larger area for concentration polarization and reduced the water flux. This experiment demonstrated the variation of roughness and water flux, providing an effective idea for the preparation of high-performance FO membranes.
Collapse
|
6
|
Wang J, Wang L, He M, Wang X, Lv Y, Huang D, Wang J, Miao R, Nie L, Hao J, Wang J. Recent advances in thin film nanocomposite membranes containing an interlayer (TFNi): fabrication, applications, characterization and perspectives. RSC Adv 2022; 12:34245-34267. [PMID: 36545600 PMCID: PMC9706687 DOI: 10.1039/d2ra06304b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Polyamide (PA) reverse osmosis and nanofiltration membranes have been applied widely for desalination and wastewater reuse in the last 5-10 years. A novel thin-film nanocomposite (TFN) membrane featuring a nanomaterial interlayer (TFNi) has emerged in recent years and attracted the attention of researchers. The novel TFNi membranes are prepared from different nanomaterials and with different loading methods. The choices of intercalated nanomaterials, substrate layers and loading methods are based on the object to be treated. The introduction of nanostructured interlayers improves the formation of the PA separation layer and provides ultrafast water molecule transport channels. In this manner, the TFNi membrane mitigates the trade-off between permeability and selectivity reported for polyamide composite membranes. In addition, TFNi membranes enhance the removal of metal ions and organics and the recovery of organic solvents during nanofiltration and reverse osmosis, which is critical for environmental ecology and industrial applications. This review provides statistics and analyzes the developments in TFNi membranes over the last 5-10 years. The latest research results are reviewed, including the selection of the substrate and interlayer materials, preparation methods, specific application areas and more advanced characterization methods. Mechanistic aspects are analyzed to encourage future research, and potential mechanisms for industrialization are discussed.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lei Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Miaolu He
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Xudong Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Yongtao Lv
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Danxi Huang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jin Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Rui Miao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lujie Nie
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jiajin Hao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jianmin Wang
- Zhongfan International Engineering Design Co. Lian Hu Road, No. 6 Courtyard Xi'an 710082 China
| |
Collapse
|
7
|
β-Cyclodextrin-ionic liquid functionalized chiral composite membrane for enantioseparation of drugs and molecular simulation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Jeong S, Yuan G, Satija SK, Jeon N, Lee E, Kim Y, Choi S, Koo J. Polyamide thin films with nanochannel networks synthesized at the liquid–gas interface for water purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Hu D, Ren X, Fu H, Wang Y, Feng X, Li H. Constructing highly rough skin layer of thin film (nano)composite polyamide membranes to enhance separation performance: A review. J Appl Polym Sci 2022. [DOI: 10.1002/app.52692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dan Hu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Xiaomin Ren
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Hongyan Fu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Yu Wang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Xudong Feng
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Hehe Li
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| |
Collapse
|
10
|
Re-thinking polyamide thin film formation: How does interfacial destabilization dictate film morphology? J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Gan Q, Peng LE, Guo H, Yang Z, Tang CY. Cosolvent-Assisted Interfacial Polymerization toward Regulating the Morphology and Performance of Polyamide Reverse Osmosis Membranes: Increased m-Phenylenediamine Solubility or Enhanced Interfacial Vaporization? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10308-10316. [PMID: 35767677 DOI: 10.1021/acs.est.2c01140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cosolvent-assisted interfacial polymerization (IP) can effectively enhance the separation performance of thin film composite (TFC) reverse osmosis (RO) membranes. However, the underlying mechanisms regulating the formation of their polyamide (PA) rejection films remain controversial. The current study reveals two essential roles of cosolvents in the IP reaction: (1) directly promoting interfacial vaporization with their lower boiling points and (2) increasing the solubility of m-phenylenediamine (MPD) in the organic phase, thereby indirectly promoting the IP reaction. Using a series of systematically chosen cosolvents (i.e., diethyl ether, acetone, methanol, and toluene) with different boiling points and MPD solubilities, we show that the surface morphologies of TFC RO membranes were regulated by the combined direct and indirect effects. A cosolvent favoring interfacial vaporization (e.g., lower boiling point, greater MPD solubility, and/or higher concentration) tends to create greater apparent thickness of the rejection layer, larger nanovoids within the layer, and more extensive exterior PA layers, leading to significantly improved membrane water permeance. We further demonstrate the potential to achieve better antifouling performance for the cosolvent-assisted TFC membranes. The current study provides mechanistic insights into the critical roles of cosolvents in IP reactions, providing new tools for tailoring membrane morphology and separation properties toward more efficient desalination and water reuse.
Collapse
Affiliation(s)
- Qimao Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
12
|
Zhang S, Shen L, Deng H, Liu Q, You X, Yuan J, Jiang Z, Zhang S. Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108457. [PMID: 35238090 DOI: 10.1002/adma.202108457] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Ultrathin membranes are at the forefront of membrane research, offering great opportunities in revolutionizing separations with ultrafast transport. Driven by advanced nanomaterials and manufacturing technology, tremendous progresses are made over the last 15 years in the fabrications and applications of sub-50 nm membranes. Here, an overview of state-of-the-art ultrathin membranes is first introduced, followed by a summary of the fabrication techniques with an emphasis on how to realize such extremely low thickness. Then, different types of ultrathin membranes, categorized based on their structures, that is, network, laminar, or framework structures, are discussed with a focus on the interplays among structure, fabrication methods, and separation performances. Recent research and development trends are highlighted. Meanwhile, the performances and applications of current ultrathin membranes for representative separations (gas separation and liquid separation) are thoroughly analyzed and compared. Last, the challenges in material design, structure construction, and coordination are given, in order to fully realize the potential of ultrathin membranes and facilitate the translation from scientific achievements to industrial productions.
Collapse
Affiliation(s)
- Shiyu Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liang Shen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Deng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qinze Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xinda You
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Sui Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
13
|
Effect of the Incorporation of ZIF-8@GO into the Thin-Film Membrane on Salt Rejection and BSA Fouling. MEMBRANES 2022; 12:membranes12040436. [PMID: 35448406 PMCID: PMC9027943 DOI: 10.3390/membranes12040436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022]
Abstract
A series of Zeolitic imidazole framework-8 (ZIF-8) clusters supported on graphene oxide (ZIF-8@GO) nanocomposites were prepared by varying the ratios of ZIF-8 to GO. The resultant nanocomposites were characterized using various techniques, such as Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), Fourier Transform Infrared (FTIR) and Raman spectroscopy. These nanocomposites were incorporated into the thin film layer during interfacial polymerisation process of m-phenylenediamine (aqueous phase which contained the dispersed nanocomposites) and trimesoyl chloride (TMC, organic phase) at room temperature onto polyethersulfone (PES) ultrafiltration (UF) support membrane. The membrane surface morphology, cross section and surface roughness were characterized using SEM and AFM, respectively. Compared to the baseline membranes, the thin film nanofiltration (TFN) membranes exhibited improved pure water flux (from 1.66 up to 7.9 L.m-2h-1), salt rejection (from 40 to 98%) and fouling resistance (33 to 88%). Optimum ZIF-8 to GO ratio was established as indicated in observed pure water flux, salt rejection and BSA fouling resistance. Therefore, a balance in hydrophilic and porous effect of the filler was observed to lead to this observed membrane behaviour suggesting that careful filler design can result in performance gain for thin film composite (TFC) membranes for water treatment application.
Collapse
|
14
|
Zhang M, Hu X, Peng L, Zhou S, Zhou Y, Xie S, Song X, Gao C. The Intrinsic Parameters of the Polyamide Nanofilm in Thin-Film Composite Reverse Osmosis (TFC-RO) Membranes: The Impact of Monomer Concentration. MEMBRANES 2022; 12:membranes12040417. [PMID: 35448387 PMCID: PMC9032585 DOI: 10.3390/membranes12040417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023]
Abstract
The realistic resistance zone of water and salt molecules to transport across a TFC-RO membrane is the topmost polyamide nanofilm. The existence of hollow voids in the fully aromatic polyamide (PA) film gives its surface ridge-and-valley morphologies, which confuses the comprehensions of the definition of the PA thickness. The hollow voids, however, neither participate in salt–water separation nor hinder water penetrating. In this paper, the influence of intrinsic thickness (single wall thickness) of the PA layer on water permeability was studied by adjusting the concentration of reacting monomers. It confirms that the true permeation resistance of water molecules originates from the intrinsic thickness portion of the membrane. The experimental results show that the water permeability constant decreases from 3.15 ± 0.02 to 2.74 ± 0.10 L·m−2·h−1·bar−1 when the intrinsic thickness of the membrane increases by 9 nm. The defects on the film surface generate when the higher concentration of MPD is matched with the relatively low concentration of TMC. In addition, the role of MPD and TMC in the micro-structure of the PA membrane was discussed, which may provide a new way for the preparation of high permeability and high selectivity composite reverse osmosis membranes.
Collapse
Affiliation(s)
- Mengling Zhang
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (M.Z.); (X.H.); (L.P.); (S.Z.); (C.G.)
| | - Xiangyang Hu
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (M.Z.); (X.H.); (L.P.); (S.Z.); (C.G.)
| | - Lei Peng
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (M.Z.); (X.H.); (L.P.); (S.Z.); (C.G.)
| | - Shilin Zhou
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (M.Z.); (X.H.); (L.P.); (S.Z.); (C.G.)
| | - Yong Zhou
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (M.Z.); (X.H.); (L.P.); (S.Z.); (C.G.)
- Correspondence: (Y.Z.); (S.X.); (X.S.)
| | - Shijie Xie
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (M.Z.); (X.H.); (L.P.); (S.Z.); (C.G.)
- Correspondence: (Y.Z.); (S.X.); (X.S.)
| | - Xiaoxiao Song
- Bruker Shanghai Office 9F, Building NO.1, Lane 2570 Hechuan Rd, Minhang District, Shanghai 200233, China
- Correspondence: (Y.Z.); (S.X.); (X.S.)
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (M.Z.); (X.H.); (L.P.); (S.Z.); (C.G.)
| |
Collapse
|
15
|
A comprehensive review of electrospray technique for membrane development: Current status, challenges, and opportunities. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Li X, Wang Z, Han X, Liu Y, Wang C, Yan F, Wang J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Yang G, Zhang Z, Yin C, Shi X, Wang Y. Polyamide membranes enabled by covalent organic framework nanofibers for efficient reverse osmosis. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guanghui Yang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| | - Congcong Yin
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| | - Xiansong Shi
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| | - Yong Wang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| |
Collapse
|
18
|
Shui X, Li J, Zhang M, Fang C, Zhu L. Tailoring ultrathin microporous polyamide films with rapid solvent transport by molecular layer-by-layer deposition. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Wang S, Bing S, Li Y, Zhou Y, Zhang L, Gao C. Polyamide membrane with nanocluster assembly structure for desalination. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Liu C, Wang W, Yang B, Xiao K, Zhao H. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies. WATER RESEARCH 2021; 195:116976. [PMID: 33706215 DOI: 10.1016/j.watres.2021.116976] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Membrane technology has been widely used in the wastewater treatment and seawater desalination. In recent years, the reverse osmosis (RO) membrane represented by polyamide (PA) has made great progress because of its excellent properties. However, the conventional PA RO membranes still have some scientific problems, such as membrane fouling, easy degradation after chlorination, and unclear mechanisms of salt retention and water flux, which seriously impede the widespread use of RO membrane technology. This paper reviews the progress in the research and development of the RO membrane, with key focus on the mechanisms and strategies of the contemporary separation, anti-fouling and chlorine resistance of the PA RO membrane. This review seeks to provide state-of-the-art insights into the mitigation strategies and basic mechanisms for some of the key challenges. Under the guidance of the fundamental understanding of each mechanism, operation and modification strategies are discussed, and reasonable analysis is carried out, which can address some key technical challenges. The last section of the review focuses on the technical issues, challenges, and future perspective of these mechanisms and strategies. Advances in synergistic mechanisms and strategies of the PA RO membranes have been rarely reviewed; thus, this review can serve as a guide for new entrants to the field of membrane water treatment and established researchers.
Collapse
Affiliation(s)
- Chao Liu
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjing Wang
- Institute of Ecology & Environment Governance, Hebei University, Baoding 071002, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
21
|
Does interfacial vaporization of organic solvent affect the structure and separation properties of polyamide RO membranes? J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119173] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Li P, Shen K, Zhang T, Ding S, Wang X. High-performance polyamide composite membranes via double-interfacial polymerizations on a nanofibrous substrate for pervaporation dehydration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Yang Z, Sun PF, Li X, Gan B, Wang L, Song X, Park HD, Tang CY. A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15563-15583. [PMID: 33213143 DOI: 10.1021/acs.est.0c05377] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The separation properties of polyamide reverse osmosis and nanofiltration membranes, widely applied for desalination and water reuse, are constrained by the permeability-selectivity upper bound. Although thin-film nanocomposite (TFN) membranes incorporating nanomaterials exhibit enhanced water permeance, their rejection is only moderately improved or even impaired due to agglomeration of nanomaterials and formation of defects. A novel type of TFN membranes featuring an interlayer of nanomaterials (TFNi) has emerged in recent years. These novel TFNi membranes show extraordinary improvement in water flux (e.g., up to an order of magnitude enhancement) along with better selectivity. Such enhancements can be achieved by a wide selection of nanomaterials, ranging from nanoparticles, one-/two-dimensional materials, to interfacial coatings. The use of nanostructured interlayers not only improves the formation of polyamide rejection layers but also provides an optimized water transport path, which enables TFNi membranes to potentially overcome the longstanding trade-off between membrane permeability and selectivity. Furthermore, TFNi membranes can potentially enhance the removal of heavy metals and micropollutants, which is critical for many environmental applications. This review critically examines the recent developments of TFNi membranes and discusses the underlying mechanisms and design criteria. Their potential environmental applications are also highlighted.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| | - Peng-Fei Sun
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bowen Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Li Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoxiao Song
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| |
Collapse
|
24
|
Behera S, Akkihebbal SK. Intrinsic kinetics of interfacial polycondensation reactions– the reaction of mPDA with TMC. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Son M, Cho KH, Jeong K, Park J. Membrane and Electrochemical Processes for Water Desalination: A Short Perspective and the Role of Nanotechnology. MEMBRANES 2020; 10:E280. [PMID: 33053773 PMCID: PMC7600412 DOI: 10.3390/membranes10100280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
In the past few decades, membrane-based processes have become mainstream in water desalination because of their relatively high water flux, salt rejection, and reasonable operating cost over thermal-based desalination processes. The energy consumption of the membrane process has been continuously lowered (from >10 kWh m-3 to ~3 kWh m-3) over the past decades but remains higher than the theoretical minimum value (~0.8 kWh m-3) for seawater desalination. Thus, the high energy consumption of membrane processes has led to the development of alternative processes, such as the electrochemical, that use relatively less energy. Decades of research have revealed that the low energy consumption of the electrochemical process is closely coupled with a relatively low extent of desalination. Recent studies indicate that electrochemical process must overcome efficiency rather than energy consumption hurdles. This short perspective aims to provide platforms to compare the energy efficiency of the representative membrane and electrochemical processes based on the working principle of each process. Future water desalination methods and the potential role of nanotechnology as an efficient tool to overcome current limitations are also discussed.
Collapse
Affiliation(s)
- Moon Son
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea; (M.S.); (K.H.C.)
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea; (M.S.); (K.H.C.)
| | - Kwanho Jeong
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea; (M.S.); (K.H.C.)
| | - Jongkwan Park
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| |
Collapse
|
26
|
Liu C, Zhang J, Wang W, Guo Y, Xiao K. Effects of gamma-ray irradiation on separation and mechanical properties of polyamide reverse osmosis membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Gan B, Qi S, Song X, Yang Z, Tang CY, Cao X, Zhou Y, Gao C. Ultrathin polyamide nanofilm with an asymmetrical structure: A novel strategy to boost the permeance of reverse osmosis membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Yan W, Shi M, Dong C, Liu L, Gao C. Applications of tannic acid in membrane technologies: A review. Adv Colloid Interface Sci 2020; 284:102267. [PMID: 32966965 DOI: 10.1016/j.cis.2020.102267] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 01/26/2023]
Abstract
Today, membrane technologies play a big role in chemical industry, especially in separation engineering. Tannic acid, one of the most famous polyphenols, has attracted widespread interest in membrane society. In the past several years, researches on the applications of tannic acid in membrane technologies have grown rapidly. However, there has been lack of a comprehensive review for now. Here, we summarize the recent developments in this field for the first time. We comb the history of tannic acid and introduce the properties of tannic acid firstly, and then we turn our focus onto the applications of membrane surface modification, interlayers and selective layers construction and mixed matrix membrane development. In those previous works, tannic acid has been demonstrated to be capable of making a great contribution to the membrane science and technology. Especially in membrane surface/interface engineering (such as the construction of superhydrophilic and antifouling surfaces and polymer/nanoparticle interfaces with high compatibility) and development of thin film composite membranes with high permselectivity (such as developing thin film composite membranes with ultrahigh flux and high rejection), tannic acid can play a positive and great role. Despite this, there are still many critical challenges lying ahead. We believe that more exciting progress will be made in addressing these challenges in the future.
Collapse
Affiliation(s)
- Wentao Yan
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mengqi Shi
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China.
| | - Chenxi Dong
- Research Institute of Shannxi Yanchang Petroleum (Group) Co. Ltd., Xi'an 710075, PR China
| | - Lifen Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
29
|
Improvement of permeability and rejection of an acid resistant polysulfonamide thin-film composite nanofiltration membrane by a sulfonated poly(ether ether ketone) interlayer. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Song X, Gan B, Qi S, Guo H, Tang CY, Zhou Y, Gao C. Intrinsic Nanoscale Structure of Thin Film Composite Polyamide Membranes: Connectivity, Defects, and Structure-Property Correlation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3559-3569. [PMID: 32101410 DOI: 10.1021/acs.est.9b05892] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Transport of water, solutes, and contaminants through a thin film composite (TFC) membrane is governed by the intrinsic structure of its polyamide separation layer. In this work, we systematically characterized the nanoscale polyamide structure of four commercial TFC membranes to reveal the underlying structure-property relationship. For all the membranes, their polyamide layers have an intrinsic thickness in the range of 10-20 nm, which is an order of magnitude smaller than the more frequently reported apparent thickness of the roughness protuberances due to the ubiquitous presence of nanovoids within the rejection layers. Tracer filtration tests confirmed that these nanovoids are well connected to the pores in the substrates via the honeycomb-like opening of the backside of the polyamide layers such that the actual separation takes place at the frontside of the polyamide layer. Compared to SW30HR and BW30, loose membranes XLE and NF90 have thinner intrinsic thickness and greater effective filtration area (e.g., by the creation of secondary roughness features) for their polyamide layers, which correlates well to their significantly higher water permeability and lower salt rejection. With the aid of scanning electron microscopy, transmission electron microscopy, and tracer tests, the current study reveals the presence of nanosized defects in a polyamide film, which is possibly promoted by excessive interfacial degassing. The presence of such defects not only impairs the salt rejection but also has major implications for the removal of pathogens and micropollutants.
Collapse
Affiliation(s)
- Xiaoxiao Song
- Centre for Membrane Separation and Water Science & Technology, Department of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Hangzhou 310014, China
| | - Bowen Gan
- Centre for Membrane Separation and Water Science & Technology, Department of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Saren Qi
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Hao Guo
- Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong SAR P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong SAR P. R. China
| | - Yong Zhou
- Centre for Membrane Separation and Water Science & Technology, Department of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Hangzhou 310014, China
| | - Congjie Gao
- Centre for Membrane Separation and Water Science & Technology, Department of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Hangzhou 310014, China
| |
Collapse
|
31
|
|
32
|
Yang Z, Guo H, Tang CY. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117297] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
|
34
|
Yao Z, Yang Z, Guo H, Ma X, Dong Y, Tang CY. Highly permeable and highly selective ultrathin film composite polyamide membranes reinforced by reactable polymer chains. J Colloid Interface Sci 2019; 552:418-425. [DOI: 10.1016/j.jcis.2019.05.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/01/2022]
|
35
|
Confined nanobubbles shape the surface roughness structures of thin film composite polyamide desalination membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.027] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Effects of packing carriers and ultrasonication on membrane fouling and sludge properties of anaerobic side-stream reactor coupled membrane reactors for sludge reduction. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Liu L, Xie X, Qi S, Li R, Zhang X, Song X, Gao C. Thin film nanocomposite reverse osmosis membrane incorporated with UiO-66 nanoparticles for enhanced boron removal. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.072] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Vlotman D, Ngila J, Ndlovu T, Doyle B, Carleschi E, Malinga S. Hyperbranched polymer membrane for catalytic degradation of polychlorinated biphenyl-153 (PCB-153) in water. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
|
40
|
Liu C, Guo Y, Zhang J, Tian B, Lin O, Liu Y, Zhang C. Tailor-made high-performance reverse osmosis membranes by surface fixation of hydrophilic macromolecules for wastewater treatment. RSC Adv 2019; 9:17766-17777. [PMID: 35520574 PMCID: PMC9064689 DOI: 10.1039/c9ra02240f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/30/2019] [Indexed: 11/22/2022] Open
Abstract
Polyamide aromatic (PA) reverse osmosis (RO) membranes are currently the most important materials in the seawater desalination and wastewater treatment industry. This study used hydrophilic macromolecular polyvinylpyrrolidone (PVP) in a PA selective layer to develop a new polyamide thin-film composite (TFC), namely PA-g-PVP RO, which will be used for water treatment. The TFC is prepared via an interfacial polymerisation process, and TFC-based PVP can be transplanted on a PA surface by radiation. PA-g-PVP RO was characterised by ATR-FTIR, SEM, XPS, AFM and contact angle test and then evaluated by determining its permeability, salt retention and antifouling performance, among other properties. Results show that the chemical composition and surface morphology of the polyamide film significantly changed. A PVP brush grafted on an RO membrane surface significantly enhanced the hydrophilicity and antifouling performance of the membrane. When the PVP concentration was increased in an aqueous solution to 2%, the water contact angle of the sacrificial layer of the modified membrane decreased to 24.3°, the fouling recovery ratio to 93.4% and the salt retention increased to 99.5% at a small flux change. This combined technology can also be used for other macromolecules to modify the membrane and study the preparation and modification of ultra-filtration and nano-filtration membranes. Polyamide aromatic (PA) reverse osmosis (RO) membranes are currently the most important materials in the seawater desalination and wastewater treatment industry.![]()
Collapse
Affiliation(s)
- Chao Liu
- MIITKey Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- PR China
| | - Yongqiang Guo
- Sunflower Pharmaceutical Group Co., Ltd
- Harbin 150078
- PR China
| | - Jiaming Zhang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- PR China
| | - Bo Tian
- Technical Physics Institute of Heilongjiang Academy of Sciences
- Harbin 150086
- PR China
| | - Oukai Lin
- MIITKey Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- PR China
| | - Yawei Liu
- MIITKey Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- PR China
| | - Chunhua Zhang
- MIITKey Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- PR China
| |
Collapse
|
41
|
Liu LF, Wu H, Li RH, Yu CY, Zhao XT, Gao CJ. Modification of poly(amide-urethane-imide) (PAUI) thin film composite reverse osmosis membrane with nano-silver particles. RSC Adv 2018; 8:37817-37827. [PMID: 35558596 PMCID: PMC9089393 DOI: 10.1039/c8ra04906h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/31/2018] [Indexed: 12/02/2022] Open
Abstract
A novel reverse osmosis (RO) composite membrane, poly(amide-urethane-imide@Ag) (PAUI@Ag), was prepared on a polysulfone supporting film through two-step interfacial polymerization. First, in the 1st interfacial polymerization procedure, a new tri-functional crosslinking agent with –OCOCl and –COCl groups, 5-choroformyloxyisophaloyl chloride (CFIC), was reacted with 4-methyl-phenylenediamine (MMPD) without curing treatment to obtain the poly(amide-urethane) base membrane with a CFIC–MMPD precursor separation layer. And then N,N′-dimethyl-m-phenylenediamine (DMMPD) with nano-Ag particle dispersion was introduced onto the base membrane to further construct a CFIC–DMMPD modified ultrathin separation layer via the 2nd interfacial polymerization. Thus, the PAUI@Ag RO membrane with poly(amide-urethane-imide) bi-layer skin was obtained. The membrane was characterized for the chemical composition of separation layer, the membrane cross-section structure and the membrane surface morphology. Permeation experiment was employed to evaluate the PAUI@Ag membrane performance including salt rejection rate and water flux. The results revealed that the PAUI@Ag membrane composed the highly cross-linked separation layer with entire ridges and valleys, small surface roughness, and well dispersed nano-Ag particles. Upon exposure of the membranes to high concentration of free chlorine solutions, the PAUI@Ag RO membrane showed a slightly less chlorine-resistant property compared with the nascent PAUI RO membrane, but was still superior to the conventional polyamide MPD-TMC RO membrane, meanwhile it processed higher anti-biofouling property. A novel reverse osmosis (RO) composite membrane, poly(amide-urethane-imide@Ag) (PAUI@Ag), was prepared on a polysulfone supporting film through two-step interfacial polymerization.![]()
Collapse
Affiliation(s)
- Li-Fen Liu
- Center for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology Hangzhou 310014 China .,Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province Hangzhou 310014 China
| | - Hao Wu
- Center for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology Hangzhou 310014 China .,College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 China
| | - Rui-Han Li
- Center for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology Hangzhou 310014 China .,Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province Hangzhou 310014 China
| | - Chun-Yang Yu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai China 200240
| | - Xue-Ting Zhao
- Center for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology Hangzhou 310014 China .,Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province Hangzhou 310014 China
| | - Cong-Jie Gao
- Center for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology Hangzhou 310014 China .,Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province Hangzhou 310014 China
| |
Collapse
|
42
|
Otitoju T, Saari R, Ahmad A. Progress in the modification of reverse osmosis (RO) membranes for enhanced performance. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
43
|
Chowdhury MR, Steffes J, Huey BD, McCutcheon JR. 3D printed polyamide membranes for desalination. Science 2018; 361:682-686. [DOI: 10.1126/science.aar2122] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 06/08/2018] [Indexed: 11/02/2022]
Abstract
Polyamide thickness and roughness have been identified as critical properties that affect thin-film composite membrane performance for reverse osmosis. Conventional formation methodologies lack the ability to control these properties independently with high resolution or precision. An additive approach is presented that uses electrospraying to deposit monomers directly onto a substrate, where they react to form polyamide. The small droplet size coupled with low monomer concentrations result in polyamide films that are smoother and thinner than conventional polyamides, while the additive nature of the approach allows for control of thickness and roughness. Polyamide films are formed with a thickness that is controllable down to 4-nanometer increments and a roughness as low as 2 nanometers while still exhibiting good permselectivity relative to a commercial benchmarking membrane.
Collapse
|
44
|
Functionalized Graphene Oxide Modified Polyethersulfone Membranes for Low-Pressure Anionic Dye/Salt Fractionation. Polymers (Basel) 2018; 10:polym10070795. [PMID: 30960720 PMCID: PMC6403891 DOI: 10.3390/polym10070795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 11/16/2022] Open
Abstract
In this study, polyelectrolyte assembled functionalized graphene oxide (PE-GO) membranes were fabricated through a one-step charge facilitated deposition method for high performance dye/salt separation. According to the intercalation of polydopamine (PDA) and (ionic liquid) IL functional moieties into the GO membranes, the pore size of the resulted PE-pGO and PE-iGO membrane increased from 2.69 nm to 4.13 nm and 6.54 nm, respectively. Correspondingly, a pure water flux of 13.8 ± 2.2, 36.7 ± 3.4, and 52.1 ± 6.7 L m−1 h−1 bar−1 was achieved for PE-GO, PE-pGO and PE-iGO membrane, respectively. PE-iGO membrane with the largest pore size could be operated with significant water permeability (28.3 to 38.3 L m−1 h−1 bar−1) at a low operating pressure range of 0.5–2 bar (dye concentration = 100 ppm, salt concentration = 5 g/L). More importantly, functionalities introduced to the GO nanosheets are found to impact the dye adsorption to the membrane surface. The IL intercalation promotes the elution of dye molecules from the IL moieties at elevated pH, therefore enhancing the efficiency of alkaline washing of the membrane. By contrast, the intercalation of PDA weakens such efficiency due to its strong adhesion force to the dye molecules even at the alkaline condition.
Collapse
|
45
|
Layer-by-layer assembly of anion exchange membrane by electrodeposition of polyelectrolytes for improved antifouling performance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Wan CF, Yang T, Gai W, Lee YD, Chung TS. Thin-film composite hollow fiber membrane with inorganic salt additives for high mechanical strength and high power density for pressure-retarded osmosis. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Modification of Polyamide-Urethane (PAUt) Thin Film Composite Membrane for Improving the Reverse Osmosis Performance. Polymers (Basel) 2018; 10:polym10040346. [PMID: 30966381 PMCID: PMC6415036 DOI: 10.3390/polym10040346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022] Open
Abstract
In the current study, the poly (amide-urethane) (PAUt) membranes were successfully fabricated by interfacial polymerization of m-phenylenediamine (MPD) and 5-choroformyloxyisophaloyl chloride (CFIC) on the polysulfone substrates. Two modification methods based on layer-by-layer assembly were applied to modify the PAUt membrane surface to achieve antifouling property: 1. Chitosan (CS) was directly self-assembled on the PAUt membrane (i.e., PAUt-CS); and 2. polydimethyl diallyl ammonium chloride (PDDA), polystyrene sulfonate (PSS), and CS were successively self-assembled on the membrane surface (i.e., PAUt-PDDA/PSS/CS). The resultant membranes were symmetrically characterized by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Contact Angle Meter (CAM), respectively. The results indicated that the modified membranes had much smoother and more hydrophilic surfaces as compared to the nascent PAUt membrane. Meanwhile, the modified membranes exhibited better reverse osmosis performance in terms of water permeability and salt rejection. After the modified membranes were fouled by lake water, the PAUt-PDDA/PSS/CS membrane presented the best antifouling performance among the three types of membranes. Combining the reverse osmosis performance with the anti-fouling property obviously, the PAUt-PDDA/PSS/CS membrane behaved as a promising candidate to be used in real applications.
Collapse
|
48
|
Song X, Zambare RS, Qi S, Sowrirajalu BN, James Selvaraj AP, Tang CY, Gao C. Charge-Gated Ion Transport through Polyelectrolyte Intercalated Amine Reduced Graphene Oxide Membranes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41482-41495. [PMID: 29111656 DOI: 10.1021/acsami.7b13724] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Charge-gated channels are nature's solutions for transport of water molecules and ions through aquaporins in biological membranes while excluding undesired substances. The same mechanism has good potentials to be adopted in pressure or electrically driven membrane separation processes. Herein, we report highly charged nanochannels created in polyelectrolyte (PE) intercalated amine reduced graphene oxide membrane (PE@ArGO membrane). The PE@ArGO membrane, with a rejection layer of ∼160 nm in thickness, features a laminate structure and a smooth top surface of a low roughness (typically ∼17.2 nm). Further, a modified PE@ArGO membrane (mPE@ArGO membrane) was developed in situ using free chlorine scavenging post-treatment method, which was designed to alter the charge while keeping alteration to the layered structure minimal. The surface charge of the PE@ArGO and mPE@ArGO membrane was +4.37 and -4.28 mC/m2 respectively. In pressure driven processes, the pure water permeability for PE@ArGO and mPE@ArGO was 2.9 and 10.8 L m-2 h-1 bar-1, respectively. Salt rejection is highly dependent on the charge density of the membrane surface, the valence of the co-ions and the size of ions in hydrated form. For example, in the positively charged PE@ArGO membranes, the rejection of the salts follows the order of: R(MgCl2), 93.0% > R(NaCl), 88.2% ≈ R(MgSO4), 88.1% > R(Na2SO4), 65.1%; while in the negatively charged mPE@ArGO membranes, the rejection of the salts follows the order of: R(Na2SO4), 90.3% > R(NaCl), 85.4% > R(MgSO4), 68.3% > R(MgCl2), 42.9%. To the best knowledge of the authors, this is the first study to report graphene oxide based membranes (GOBMs) with high density positive/negative charge gated ion transport behavior. What's more, the high rejection rate along with high water permeability of the PE@ArGO and mPE@ArGO membranes has not been achieved by other types of GOBMs.
Collapse
Affiliation(s)
- Xiaoxiao Song
- Centre for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology , Hangzhou, 310014, China
| | - Rahul S Zambare
- Environmental and Water Technology Centre of Innovation (EWTCOI), Ngee Ann Polytechnic , 599489, Singapore
| | - Saren Qi
- Singapore Membrane Technology Center, Nanyang Technological University , 639798, Singapore
| | - Bhuvana Nil Sowrirajalu
- Environmental and Water Technology Centre of Innovation (EWTCOI), Ngee Ann Polytechnic , 599489, Singapore
| | | | - Chuyang Y Tang
- The University of Hong Kong, Department of Civil Engineering , Pokfulam, Hong Kong
| | - Congjie Gao
- Centre for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology , Hangzhou, 310014, China
| |
Collapse
|