1
|
Wu Y, Yang J, Zhang R, Li H, Mu R, Zhao Y. Organic-Inorganic Modification of PVDF Membranes by PDA@ZnO and PDA@MgO Nanoparticles for Enhanced Performance of Organic Dye Wastewater Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6697-6709. [PMID: 40047398 DOI: 10.1021/acs.langmuir.4c04728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Polyvinylidene fluoride (PVDF) membranes represent a potential technology for the in-depth treatment of organic dye-containing wastewater. Nevertheless, the intractable membrane fouling and the limited versatility have significantly constrained its applications. Herein, through the nonsolvent-induced phase inversion method, we have successfully fabricated the PDA@MgO/PVDF and PDA@ZnO/PVDF membranes, which are modified by the synergistic action of MgO or ZnO nanoparticles with polydopamine (PDA), respectively. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as the analyses of pore structure, contact angle, and surface free energy, were utilized to characterize the hybrid membranes. The results demonstrate that the modification of PDA@MgO and PDA@ZnO can enhance the hydrophilicity, pure flux, dye rejection, and pollution resistance of PVDF membranes. The enhanced hydrophilicity of the modified membranes results from the increase in surface free energy and its polar component term. Comparatively, the PDA@ZnO/PVDF membrane exhibits a smaller contact angle (69°) and a higher pure water flux (378.63 L/m2·h·bar), whereas the PDA@MgO/PVDF membrane possesses greater mechanical strength and better antifouling performance. The PDA@MgO/PVDF membrane can achieve a rejection rate of 94.6% for disperse deep blue 79, and the flux recovery rate can reach approximately 82%. This research offers novel insights into the application of PVDF membranes for the treatment of organic dye-containing wastewater.
Collapse
Affiliation(s)
- Yiming Wu
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Jing Yang
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Ruifeng Zhang
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Hongji Li
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Ruihua Mu
- School of Environment & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yamei Zhao
- School of Environment & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| |
Collapse
|
2
|
Carta M, Antonangelo AR, Jansen JC, Longo M. The Difference in Performance and Compatibility between Crystalline and Amorphous Fillers in Mixed Matrix Membranes for Gas Separation (MMMs). Polymers (Basel) 2023; 15:2951. [PMID: 37447596 DOI: 10.3390/polym15132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
An increasing number of high-performing gas separation membranes is reported almost on a daily basis, yet only a few of them have reached commercialisation while the rest are still considered pure research outcomes. This is often attributable to a rapid change in the performance of these separation systems over a relatively short time. A common approach to address this issue is the development of mixed matrix membranes (MMMs). These hybrid systems typically utilise either crystalline or amorphous additives, so-called fillers, which are incorporated into polymeric membranes at different loadings, with the aim to improve and stabilise the final gas separation performance. After a general introduction to the most relevant models to describe the transport properties in MMMs, this review intends to investigate and discuss the main advantages and disadvantages derived from the inclusion of fillers of different morphologies. Particular emphasis will be given to the study of the compatibility at the interface between the filler and the matrix created by the two different classes of additives, the inorganic and crystalline fillers vs. their organic and amorphous counterparts. It will conclude with a brief summary of the main findings.
Collapse
Affiliation(s)
- Mariolino Carta
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, UK
| | - Ariana R Antonangelo
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, UK
| | - Johannes Carolus Jansen
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Mariagiulia Longo
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| |
Collapse
|
3
|
Zheng Y, Liu Q, Guan X, Liu Y, Nie S, Wang Y. Nitrogen Self-Doping Carbon Derived from Functionalized Poly(Vinylidene Fluoride) (PVDF) for Supercapacitor and Adsorption Application. MICROMACHINES 2022; 13:1747. [PMID: 36296100 PMCID: PMC9611783 DOI: 10.3390/mi13101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
A new synthetic strategy has been developed for the facile fabrication of a N-doped porous carbon (NC-800) material via a facile carbonization of functionalized poly(vinylidene fluoride) (PVDF). The prepared NC-800 exhibits good specific capacitance of 205 F/g at 1 A/g and cycle stability (95.2% retention after 5000 cycles at 1 A/g). The adsorption capacity of NC-800 on methylene blue and methyl orange was 780 mg/g and 800 mg/g, respectively. The facile and economical method and good performance (supercapacitor and adsorption) suggest that the NC-800 is a promising material for energy storage and adsorption.
Collapse
Affiliation(s)
- Yantao Zheng
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
- Xifeng Phosphorite Mine Co., Ltd., Guiyang 551100, China
| | - Qifei Liu
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| | - Xingyu Guan
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
- College of Material Engineering, Saint Petersburg State Technical University, 190013 Saint Petersburg, Russia
| | - Yuan Liu
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| | - Shengqiang Nie
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| | - Yi Wang
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| |
Collapse
|
4
|
A New Polyvinylidene Fluoride Membrane Synthesized by Integrating of Powdered Activated Carbon for Treatment of Stabilized Leachate. WATER 2021. [DOI: 10.3390/w13162282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stabilized landfill leachate contains a wide variety of highly concentrated non-biodegradable organics, which are extremely toxic to the environment. Though numerous techniques have been developed for leachate treatment, advanced membrane filtration is one of the most environmentally friendly methods to purify wastewater effectively. In the current study, a novel polymeric membrane was produced by integrating powdered activated carbon (PAC) on polyvinylidene fluoride (PVDF) to synthesize a thin membrane using the phase inversion method. The membrane design was optimized using response surface methodology (RSM). The fabricated membrane was effectively applied for the filtration of stabilized leachate using a cross-flow ring (CFR) test. The findings suggested that the filtration properties of fabricated membrane were effectively enhanced through the incorporation of PAC. The optimum removal efficiencies by the fabricated membrane (14.9 wt.% PVDF, 1.0 wt.% PAC) were 35.34, 48.71, and 22.00% for COD, colour and NH3-N, respectively. Water flux and transmembrane pressure were also enhanced by the incorporated PAC and recorded 61.0 L/m2·h and 0.67 bar, respectively, under the conditions of the optimum removal efficiency. Moreover, the performance of fabricated membranes in terms of pollutant removal, pure water permeation, and different morphological characteristics were systematically analyzed. Despite the limited achievement, which might be improved by the addition of a hydrophilic additive, the study offers an efficient way to fabricate PVDF-PAC membrane and to optimize its treatability through the RSM tool.
Collapse
|
5
|
Tran TTV, Kumar SR, Nguyen CH, Lee JW, Tsai HA, Hsieh CH, Lue SJ. High-permeability graphene oxide and poly(vinyl pyrrolidone) blended poly(vinylidene fluoride) membranes: Roles of additives and their cumulative effects. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Mixed matrix membranes for rubidium-dependent recognition and separation: A synergistic recombination design based on electrostatic interactions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117727] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Nguyen CH, Fu CC, Kao DY, Tran TTV, Juang RS. Adsorption removal of tetracycline from water using poly(vinylidene fluoride)/polyaniline-montmorillonite mixed matrix membranes. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Separation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: Donnan effect and intermolecular interaction. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.070] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Nie S, Zeng J, Qin H, Xu X, Zeng J, Yang C, Luo J. Improvement in the blood compatibility of polyvinylidene fluoride membranes via in situ cross-linking polymerization. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shengqiang Nie
- Engineering Technology Research Center for Materials Protection of Wear and Corrosion of Guizhou Province, University of Guizhou Province, College of Chemistry and Materials Engineering; Guiyang University; Guiyang 550000 China
| | - Jiazhou Zeng
- Engineering Technology Research Center for Materials Protection of Wear and Corrosion of Guizhou Province, University of Guizhou Province, College of Chemistry and Materials Engineering; Guiyang University; Guiyang 550000 China
| | - Hui Qin
- Engineering Technology Research Center for Materials Protection of Wear and Corrosion of Guizhou Province, University of Guizhou Province, College of Chemistry and Materials Engineering; Guiyang University; Guiyang 550000 China
| | - Xiaolu Xu
- Engineering Technology Research Center for Materials Protection of Wear and Corrosion of Guizhou Province, University of Guizhou Province, College of Chemistry and Materials Engineering; Guiyang University; Guiyang 550000 China
| | - Jia Zeng
- Engineering Technology Research Center for Materials Protection of Wear and Corrosion of Guizhou Province, University of Guizhou Province, College of Chemistry and Materials Engineering; Guiyang University; Guiyang 550000 China
| | - Chunlin Yang
- Engineering Technology Research Center for Materials Protection of Wear and Corrosion of Guizhou Province, University of Guizhou Province, College of Chemistry and Materials Engineering; Guiyang University; Guiyang 550000 China
| | - Jun Luo
- Engineering Technology Research Center for Materials Protection of Wear and Corrosion of Guizhou Province, University of Guizhou Province, College of Chemistry and Materials Engineering; Guiyang University; Guiyang 550000 China
| |
Collapse
|
10
|
Zhang X, Zhou J, Zou X, Wang Z, Chu Y, Wang S. Preparation of Nano-SiO₂/Al₂O₃/ZnO-Blended PVDF Cation-Exchange Membranes with Improved Membrane Permselectivity and Oxidation Stability. MATERIALS 2018; 11:ma11122465. [PMID: 30518147 PMCID: PMC6316986 DOI: 10.3390/ma11122465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 11/16/2022]
Abstract
Ion exchange membranes are used in practically every industry; however, most of them have defects such as low permeability and poor oxidation resistance. In this paper, cation-exchange membranes were prepared with poly (vinylidene fluoride) (PVDF) blended with nano-SiO₂, nano-Al₂O₃ and nano-ZnO. Sulfonic acid groups were injected into the membrane prepared by styrene grafting and sulfonation. The methods used for characterizing the prepared membranes were Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and electrochemical measurements. Membrane performance, such as the ion exchange capacity (IEC), water uptake (WU), transport number, membrane permselectivity, membrane resistance, functional groups, and morphology were also evaluated. The hydrophilia, IEC, and permselectivity of cation-exchange membranes depended on the nanoparticle content of the membrane matrix. High transport property values were obtained, which increased with increasing nano-SiO₂/Al₂O₃/ZnO weight fractions. Finally, the cation-exchange membranes prepared with 1.5% nano-SiO₂, 2.0% nano-Al₂O₃ or 2.0% nano-ZnO all exhibited excellent membrane properties, including membrane permselectivity (PVDF/2% ZnO-g-PSSA membranes, 94.9%), IEC (PVDF/2% Al₂O₃-g-PSSA membranes, 2.735 mmol·g-1), and oxidation resistance (PVDF/1.5% SiO₂-g-PSSA membranes, 2.33%). They can be used to separate applications in a variety of different areas, such as water treatment, electro-driven separation, heavy metal smelting, or other electrochemical processes.
Collapse
Affiliation(s)
- Xuemin Zhang
- Engineering Research Center of Water Resources Utilization in Cold and Drought Region, Ministry of Education, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Lanzhou 730070, China.
| | - Jian Zhou
- Engineering Research Center of Water Resources Utilization in Cold and Drought Region, Ministry of Education, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Lanzhou 730070, China.
| | - Xin Zou
- Engineering Research Center of Water Resources Utilization in Cold and Drought Region, Ministry of Education, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Lanzhou 730070, China.
| | - Zhongyu Wang
- Urban and Rural Planning Bureau of Mudanjiang, No. 41, Wusuli Road, Mudanjiang 157000, China.
| | - Yunchen Chu
- Engineering Research Center of Water Resources Utilization in Cold and Drought Region, Ministry of Education, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Lanzhou 730070, China.
| | - Sanfan Wang
- Engineering Research Center of Water Resources Utilization in Cold and Drought Region, Ministry of Education, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Lanzhou 730070, China.
| |
Collapse
|
11
|
Ike IA, Duke M. Synthetic magnetite, maghemite, and haematite activation of persulphate for orange G degradation. JOURNAL OF CONTAMINANT HYDROLOGY 2018; 215:73-85. [PMID: 30037489 DOI: 10.1016/j.jconhyd.2018.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/12/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as iron oxides, has been the subject of a number of studies. However, major discrepancies remain as to the effectiveness, mode, and factors that influence iron oxides activation of PS. In this study, an attempt has been made to bridge this important knowledge gaps by a systematic study of PS activation, measured by orange G degradation, using commercial and self-synthesised magnetite, maghemite, and haematite particles. The results showed that the activation of PS by iron oxides does not depend on mineralogy, surface area or concentration of surface OH groups, but on crystalline inhomogeneities or structural irregularities. Significant dissolution of iron oxides accompanied PS activation, in a mainly homogeneous process, requiring a low pH environment to be effective. The activation of PS by iron oxides at neutral pH was found to be no better than dissolved iron activation contrary to some earlier publications. The results also suggest that under alkaline conditions, PS alone was more effective in degrading orange G than with iron oxides or dissolved iron activation. Phosphate buffer significantly retarded orange G degradation by iron-activated or unactivated PS with negative implication for ISCO in non-acidic, buffering environments. The results of this study contribute to enhancing the fundamental understanding of ISCO processes.
Collapse
Affiliation(s)
- Ikechukwu A Ike
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria 8001, Australia.
| | - Mikel Duke
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria 8001, Australia
| |
Collapse
|
12
|
Haponska M, Trojanowska A, Nogalska A, Jastrzab R, Gumi T, Tylkowski B. PVDF Membrane Morphology-Influence of Polymer Molecular Weight and Preparation Temperature. Polymers (Basel) 2017; 9:E718. [PMID: 30966017 PMCID: PMC6418571 DOI: 10.3390/polym9120718] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/17/2022] Open
Abstract
In this study, we successfully prepared nine non-woven, supported polyvinylidene fluoride (PVDF) membranes, using a phase inversion precipitation method, starting from a 15 wt % PVDF solution in N-methyl-2-pyrrolidone. Various membrane morphologies were obtained by using (1) PVDF polymers, with diverse molecular weights ranging from 300 to 700 kDa, and (2) different temperature coagulation baths (20, 40, and 60 ± 2 °C) used for the film precipitation. An environmental scanning electron microscope (ESEM) was used for surface and cross-section morphology characterization. An atomic force microscope (AFM) was employed to investigate surface roughness, while a contact angle (CA) instrument was used for membrane hydrophobicity studies. Fourier transform infrared spectroscopy (FTIR) results show that the fabricated membranes are formed by a mixture of TGTG' chains, in α phase crystalline domains, and all-TTTT trans planar zigzag chains characteristic to β phase. Moreover, generated results indicate that the phases' content and membrane morphologies depend on the polymer molecular weight and conditions used for the membranes' preparation. The diversity of fabricated membranes could be applied by the End User Industries for different applications.
Collapse
Affiliation(s)
- Monika Haponska
- Departament d' Enginyeria Química, Universitat Rovira i Virgili, Av. dels Països Catalans 26, 43007 Tarragona, Spain.
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| | - Anna Trojanowska
- Departament d' Enginyeria Química, Universitat Rovira i Virgili, Av. dels Països Catalans 26, 43007 Tarragona, Spain.
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| | - Adrianna Nogalska
- Departament d' Enginyeria Química, Universitat Rovira i Virgili, Av. dels Països Catalans 26, 43007 Tarragona, Spain.
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| | - Renata Jastrzab
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| | - Tania Gumi
- Departament d' Enginyeria Química, Universitat Rovira i Virgili, Av. dels Països Catalans 26, 43007 Tarragona, Spain.
| | - Bartosz Tylkowski
- Centre Tecnològic de la Química de Catalunya, Carrer de Marcel·lí Domingo, 43007 Tarragona, Spain.
| |
Collapse
|