1
|
Liu Y, Zhang Z, Li Z, Wei X, Zhao F, Fan C, Jiang Z. Surface Segregation Methods toward Molecular Separation Membranes. SMALL METHODS 2023; 7:e2300737. [PMID: 37668447 DOI: 10.1002/smtd.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/14/2023] [Indexed: 09/06/2023]
Abstract
As a highly promising approach to solving the issues of energy and environment, membrane technology has gained increasing attention in various fields including water treatment, liquid separations, and gas separations, owing to its high energy efficiency and eco-friendliness. Surface segregation, a phenomenon widely found in nature, exhibits irreplaceable advantages in membrane fabrication since it is an in situ method for synchronous modification of membrane and pore surfaces during the membrane forming process. Meanwhile, combined with the development of synthesis chemistry and nanomaterial, the group has developed surface segregation as a versatile membrane fabrication method using diverse surface segregation agents. In this review, the recent breakthroughs in surface segregation methods and their applications in membrane fabrication are first briefly introduced. Then, the surface segregation phenomena and the classification of surface segregation agents are discussed. As the major part of this review, the authors focus on surface segregation methods including free surface segregation, forced surface segregation, synergistic surface segregation, and reaction-enhanced surface segregation. The strategies for regulating the physical and chemical microenvironments of membrane and pore surfaces through the surface segregation method are emphasized. The representative applications of surface segregation membranes are presented. Finally, the current challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Yanan Liu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhao Zhang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zongmei Li
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Xiaocui Wei
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Fu Zhao
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Chunyang Fan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
2
|
Long M, Jiang Y, Yang C, Xu Z, Zhang R, Yuan J, Zhang S, Zhang M, Wu H, Jiang Z. In-situ assembly of polyelectrolyte via surface segregation of titanium oxide for antifouling membranes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Zhang P, Rajabzadeh S, Venault A, Wang S, Shen Q, Jia Y, Fang C, Kato N, Chang Y, Matsuyama H. One-step entrapment of a PS-PEGMA amphiphilic copolymer on the outer surface of a hollow fiber membrane via TIPS process using triple-orifice spinneret. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Engineering dual-heterogeneous membrane surface with heterostructured modifier to integrate multi-defense antifouling mechanisms. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
5
|
Wei C, Qiang R, Lin L, Gao Y, Ma S, Zhang X, Huang X. Combing three-dimensional water channels and ultra-thin skin layer enable high flux and stability of loose polyimide/SiO2 nanofiltration membranes at low operating pressure via one step in-situ modification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Novel mussel-inspired zwitterionic hydrophilic polymer to boost membrane water-treatment performance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.086] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Wang F, He M, Gao K, Su Y, Zhang R, Liu Y, Shen J, Jiang Z, Kasher R. Constructing membrane surface with synergistic passive antifouling and active antibacterial strategies through organic-inorganic composite modifier. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Huo J, Chen Z, Zhou J. Zwitterionic Membrane via Nonsolvent Induced Phase Separation: A Computer Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1973-1983. [PMID: 30056719 DOI: 10.1021/acs.langmuir.8b01786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dissipative particle dynamics (DPD) was adopted to study the nonsolvent induced phase separation (NIPS) process during a pH-responsive poly(ether sulfone) membrane preparation with a zwitterionic copolymer poly(ether sulfone)- block-polycarboxybetaine methacrylate (PES-b-PCBMA) as the blending additive. The membrane formation process and final morphology were analyzed. Simulation results show that the hydrophilic PCBMA segments enrich on the membrane surface by surface segregation and exhibit pH-responsive behavior, which is attributed to the deprotonation of the carboxylic acid group. With the polymer concentration increasing, both the shrinkage of the membrane and the flexibility of the system decrease, which also reduce the effect of surface segregation. By adjusting the blend ratio of PES-b-PCBMA with PES from 5% to 15%, the surface coverage of PCBMA segments on the membrane can be regulated. This work contributes to a better understanding on the mechanism of NIPS and can serve as a guide for the design of the polymer blend membrane.
Collapse
Affiliation(s)
- Jinhao Huo
- Guangdong Provincial Key Laboratory for Green Chemical Product technology, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Zheng Chen
- Guangdong Provincial Key Laboratory for Green Chemical Product technology, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Jian Zhou
- Guangdong Provincial Key Laboratory for Green Chemical Product technology, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
9
|
|
10
|
He M, Su Y, Zhang R, Liu Y, Zhang S, Jiang Z. In-situ construction of antifouling separation layer via a reaction enhanced surface segregation method. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
He M, Zhang S, Su Y, Zhang R, Liu Y, Jiang Z. Manipulating membrane surface porosity and pore size by in-situ assembly of Pluronic F127 and tannin. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|