1
|
Mohamed M, Tagliabue M, Tiraferri A. Technical Feasibility of Extraction of Freshwater from Produced Water with Combined Forward Osmosis and Nanofiltration. MEMBRANES 2024; 14:107. [PMID: 38786941 PMCID: PMC11123107 DOI: 10.3390/membranes14050107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
This study assesses the technical feasibility of a forward-osmosis-based system for concentrating produced water and extracting freshwater. Forward osmosis was combined with nanofiltration, the latter system used to restore the initial osmotic pressure of the diluted draw solutions while concurrently obtaining the final freshwater product. Three draw solutions, namely, MgCl2, NaCl, and C3H5NaO2, were initially tested against a synthetic water mimicking a pretreated produced water effluent having an osmotic pressure equal to 16.3 bar. MgCl2 was thus selected for high-recovery experiments. Different combinations of draw solution osmotic pressure (30, 40, 60, 80, and 120) and draw-to-feed initial volume ratios (1, 1.6, and 2.2) were tested at the laboratory scale, achieving recovery rates between roughly 35% and 70% and water fluxes between 4 and 8 L m-2h-1. One-dimensional, system-wide simulations deploying the analytical FO water flux equation were utilized to validate the experiments, investigate co-current and counter-current configurations, and understand the system potential. The diluted draw solutions were then transferred to nanofiltration to regenerate their original osmotic pressure. There, the highest observed rejection was 96.6% with an average flux of 21 L m-2h-1, when running the system to achieve 100% relative recovery.
Collapse
Affiliation(s)
- Madina Mohamed
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy;
| | - Marco Tagliabue
- Eni S.p.A., Research and Development, Via F. Maritano, 26, 20097 San Donato M.se, Italy
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy;
| |
Collapse
|
2
|
Chen M, Heijman SGJ, Rietveld LC. State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application. MEMBRANES 2021; 11:888. [PMID: 34832117 PMCID: PMC8625480 DOI: 10.3390/membranes11110888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
Membrane filtration is considered to be one of the most promising methods for oily wastewater treatment. Because of their hydrophilic surface, ceramic membranes show less fouling compared with their polymeric counterparts. Membrane fouling, however, is an inevitable phenomenon in the filtration process, leading to higher energy consumption and a shorter lifetime of the membrane. It is therefore important to improve the fouling resistance of the ceramic membranes in oily wastewater treatment. In this review, we first focus on the various methods used for ceramic membrane modification, aiming for application in oily wastewater. Then, the performance of the modified ceramic membranes is discussed and compared. We found that, besides the traditional sol-gel and dip-coating methods, atomic layer deposition is promising for ceramic membrane modification in terms of the control of layer thickness, and pore size tuning. Enhanced surface hydrophilicity and surface charge are two of the most used strategies to improve the performance of ceramic membranes for oily wastewater treatment. Nano-sized metal oxides such as TiO2, ZrO2 and Fe2O3 and graphene oxide are considered to be the potential candidates for ceramic membrane modification for flux enhancement and fouling alleviation. The passive antifouling ceramic membranes, e.g., photocatalytic and electrified ceramic membranes, have shown some potential in fouling control, oil rejection and flux enhancement, but have their limitations.
Collapse
Affiliation(s)
- Mingliang Chen
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands; (S.G.J.H.); (L.C.R.)
| | | | | |
Collapse
|
3
|
Barati N, Husein MM, Azaiez J. Modifying ceramic membranes with in situ grown iron oxide nanoparticles and their use for oily water treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Li C, Sun W, Lu Z, Ao X, Li S. Ceramic nanocomposite membranes and membrane fouling: A review. WATER RESEARCH 2020; 175:115674. [PMID: 32200336 DOI: 10.1016/j.watres.2020.115674] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 05/26/2023]
Abstract
Membrane technologies have broad applications in the removal of contaminants from drinking water and wastewater. In recent decades, ceramic membrane has made rapid progress in industrial/municipal wastewater treatment and drinking water treatment owing to their advantageous properties over conventional polymeric membrane. The beneficial characteristics of ceramic membranes include fouling resistance, high permeability, good recoverability, chemical stability, and long life time, which have found applications with the recent innovations in both fabrication methods and nanotechnology. Therefore, ceramic membranes hold great promise for potential applications in water treatment. This paper mainly reviews the progress in the research and development of ceramic membranes, with key focus on porous ceramic membranes and nanomaterial-functionalized ceramic membranes for nanofiltration or catalysis. The current state of the available ceramic membranes in industry and academia, and their potential advantages, limitations and applications are reviewed. The last section of the review focuses on ceramic membrane fouling and the efforts towards ceramic membrane fouling mitigation. The advances in ceramic membrane technologies have rarely been widely reviewed before, therefore, this review could be served as a guide for the new entrants to the field, as well to the established researchers.
Collapse
Affiliation(s)
- Chen Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Simiao Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Guo H, Tang X, Ganschow G, Korshin GV. Differential ATR FTIR spectroscopy of membrane fouling: Contributions of the substrate/fouling films and correlations with transmembrane pressure. WATER RESEARCH 2019; 161:27-34. [PMID: 31170670 DOI: 10.1016/j.watres.2019.05.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/13/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
This study examined the formation of fouling films deposited on the surface of a polyethersulfone (PES) membrane during the filtration of alginate solutions with various ionic strengths. Membrane fouling was characterized by changes of the transmembrane pressure (TMP) and ex situ measured attenuated total reflectance (ATR) Fourier-transform IR (FTIR) spectra at varying stages of filtration runs. The ATR spectra that comprise the vibration bands characteristic of the PES substrate and the deposited film were processed taking into the gradual weakening of the PES substrate-specific bands, whose intensity was shown to depend on the wavenumber of IR radiation and the thickness of the deposited layer. Strongly linear correlations between ratios of first derivatives intensity and wavenumbers of the PES reference lines were established. Calculations of the PES bands' attenuation coefficients allowed determining the apparent thickness and ATR FTIR vibrations of the fouling films per se. Strong correlations between TMP development and ATR-determined apparent thickness of the fouling layers were observed. The intensity of ATR absorbance at 3200 cm-1 was linearly correlated with TMP development for small TMP values before the point of rapidly developing failure of the hydraulic permeability of the system was reached.
Collapse
Affiliation(s)
- Hongguang Guo
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA, United States; Key Laboratory of Deep Earth Science and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, China.
| | - Xinyu Tang
- Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA, United States
| | - Gilbert Ganschow
- Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA, United States
| | - Gregory V Korshin
- Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA, United States
| |
Collapse
|
6
|
Atallah C, Mortazavi S, Tremblay AY, Doiron A. In-Process Steam Cleaning of Ceramic Membranes Used in the Treatment of Oil Sands Produced Water. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Charbel Atallah
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur Street, Ottawa, Ontario K1N 6N5, Canada
| | - Saviz Mortazavi
- CanmetMINING, Natural Resources Canada, 555 Booth Street, Ottawa, Ontario K1A 0G1, Canada
| | - André Y. Tremblay
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur Street, Ottawa, Ontario K1N 6N5, Canada
| | - Alex Doiron
- CanmetMINING, Natural Resources Canada, 555 Booth Street, Ottawa, Ontario K1A 0G1, Canada
| |
Collapse
|
7
|
Quantifying defects in ceramic tight ultra- and nanofiltration membranes and investigating their robustness. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Impact of combined oil-in-water emulsions and particulate suspensions on ceramic membrane fouling and permeability recovery. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Hu MZ, Bischoff BL, Morales-Rodriguez ME, Gray KA, Davison BH. Superhydrophobic or Hydrophilic Porous Metallic/Ceramic Tubular Membranes for Continuous Separations of Biodiesel–Water W/O and O/W Emulsions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b04888] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Z. Hu
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Brian L. Bischoff
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | - Kevin A. Gray
- Prenexus Health, Inc., 1343 N. Colorado St., Gilbert, Arizona 85233, United States
| | - Brian H. Davison
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|