1
|
Bai S, Han J, Ao N, Ya R, Ding W. Scaling and cleaning of silica scales on reverse osmosis membrane: Effective removal and degradation mechanisms utilizing gallic acid. CHEMOSPHERE 2024; 352:141427. [PMID: 38368964 DOI: 10.1016/j.chemosphere.2024.141427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Silica scaling on membranes represents one of the most important issues in industrial water systems because of its complex composition and difficulty in removal. However, there is a lack of understanding of the mechanisms for cleaning silica scales from reverse osmosis (RO) membranes. To address this research gap, this study investigated the scaling and cleaning behavior of silica on RO membrane processes, with a specific focus on the silica scale cleaning mechanism using gallic acid (GA). The membrane flux continuously decreased with operation time, even at the lowest initial silicic acid concentration, owing to silica scale blockage. The GA solution exhibited a strong efficacy in cleaning silica-scaling RO membranes. The membrane flux returned to 89.7% of the initial value by removing 81.87% of the silica scale within the first 30 min of the study period. The cleaning mechanism of GA involved its adsorption onto the surface of silica scale particles to form a surface complex and subsequently transition into a water-soluble 1:3 complex within the solution. This complex interaction facilitated the gradual decomposition of the silica scales that adhered to the membrane surface. This study has valuable implications for the development of efficient and effective silica scale cleaning solutions, providing insights into the complex interplay between GA and silica scaling mechanisms.
Collapse
Affiliation(s)
- Shuqin Bai
- Green Intelligence Environmental School, Yangtze Normal University, No. 16 Juxian Road, Fuling, Chongqing, 408100, PR China.
| | - Jue Han
- College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin, 300350, PR China
| | - Niqi Ao
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Minhang District, Shanghai, 200241, PR China
| | - Ru Ya
- Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, No. 235 West University Road, Saihan District, Hohhot, 010021, PR China
| | - Wei Ding
- Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, No. 235 West University Road, Saihan District, Hohhot, 010021, PR China
| |
Collapse
|
2
|
Xu Y, Wang YN, Chong JY, Wang R. Thermo-responsive nonionic amphiphilic copolymers as draw solutes in forward osmosis process for high-salinity water reclamation. WATER RESEARCH 2022; 221:118768. [PMID: 35752097 DOI: 10.1016/j.watres.2022.118768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Recently, thermo-responsive nonionic amphiphilic copolymers have shown a great potential as forward osmosis (FO) draw solutes for high-salinity water desalination and zero-liquid discharge (ZLD). However, the relationship between the copolymer structural properties and key characteristics as draw solutes, as well as copolymer's chemical stability after regeneration have not been much studied. In this work, we systematically investigated poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide) (PEO-PPO-PEO) copolymers as draw solute. The results showed that the PEO segments significantly influenced the viscosity, osmotic pressure and lowest phase separation temperature of the copolymer aqueous solutions. Among four commercial copolymers studied, Pluronic® L35 with moderate molecular weight (Mn 1,900 Da), 50% PEO, and relatively high hydrophilic-lipophilic balance (HLB) showed the best draw solution (DS) performance. It also showed great stability in physiochemical properties and draw capacity after more than ten cycles of regeneration. On the other hand, despite the fact that membrane fouling was observed due to the use of copolymer DS, the FO flux (∼1.2 L m‒2 h‒1, as similar with the virgin membrane) was not affected when high-salinity feedwater such as seawater RO brine was applied. Overall, our study has provided a more comprehensive understanding on the characteristics of nonionic amphiphilic copolymer DS and showcased the promise of copolymer-driven FO process in high-salinity water desalination and ZLD.
Collapse
Affiliation(s)
- Yilin Xu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yi-Ning Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Jeng Yi Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
3
|
Zhu L, Ding C, Zhu T, Wang Y. A review on the forward osmosis applications and fouling control strategies for wastewater treatment. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Shi Y, Zhang M, Zhang H, Yang F, Tang CY, Dong Y. Recent development of pressure retarded osmosis membranes for water and energy sustainability: A critical review. WATER RESEARCH 2021; 189:116666. [PMID: 33302146 DOI: 10.1016/j.watres.2020.116666] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/21/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
With the goal of zero-liquid discharge and green energy harvest, extraction of abundant green energy from saline water via pressure retarded osmosis (PRO) technology is a promising but challenging issue for water treatment technologies to achieve water and energy sustainability. Development of high performance PRO membranes has received increased concerns yet still under controversy in practical applications. In this review, a comprehensive and up-to-date discussion of some key historical developments is first introduced covering the major advances of PRO engineering applications and novel membranes especially made in recent years. Then the critical performance indicators of PRO membranes including water flux and power density are briefly discussed. Subsequently, sufficient discussion on four performance limiting factors in PRO membrane and process is presented including concentration polarization, reverse solute diffusion, membrane fouling and mechanical stability. To fully address these issues, an updated insight is provided into recent major progresses on advanced fabrication and modification techniques of novel PRO membranes featuring enhanced performance with different configurations and materials, which are also reviewed in detail based on the viewpoint of design rationales. Afterwards, antifouling strategies and engineering applications are critically introduced. Finally, conclusions and future perspective of PRO membrane for practical operation are briefly discussed.
Collapse
Affiliation(s)
- Yongxuan Shi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mingming Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
5
|
Yu W, Song D, Chen W, Yang H. Antiscalants in RO membrane scaling control. WATER RESEARCH 2020; 183:115985. [PMID: 32619802 DOI: 10.1016/j.watres.2020.115985] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/04/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Reverse osmosis (RO) plays an important role in freshwater production. Mineral scaling is an inevitable problem in the RO desalination process. Various methods, including the pretreatment of feed water, the optimization of operational processes, the development of novel membrane materials, and the addition of antiscalants, have been developed to mitigate scale formation in RO systems. Among these methods, the addition of antiscalants is a relatively cost-effective and convenient technique for membrane scaling control. In the current work, various kinds of antiscalants, scale inhibition mechanisms, and their applications to RO membrane scaling control are reviewed. Weakness of existing antiscalants and challenge arising from their practical applications, such as membrane fouling caused by antiscalants, increased bacterial growth, dosing control, and the disposal of resultant concentrates, are also presented. To effectively alleviate scaling on RO membrane by using antiscalants, the development of novel, high-performance, and environment-friendly antiscalants on the basis of an in-depth study of the inhibition mechanisms and well-established structure-activity relationships is urgently necessary. The optimization of antiscalants and their combinations with other pretreatments in practical RO operations are essential in efficient scaling control.
Collapse
Affiliation(s)
- Wei Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Di Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Wei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Hu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
6
|
Low KS, Wang YN, Ng DYF, Goh K, Li Y, Wang R. Understanding the effect of transverse vibration on hollow fiber membranes for submerged forward osmosis processes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Chen G, Xu Y, Xie M, Huang M, Lin Y, Tan W. Membrane distillation of a silver leaching solution: Role of the coexisting aluminum ions on silica scaling. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Characterization of colloidal fouling in forward osmosis via ultrasonic time- (UTDR) and frequency-domain reflectometry (UFDR). J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Gutiérrez Ruiz S, López-Ramírez JA, Hassani Zerrouk M, Egea-Corbacho Lopera A, Quiroga Alonso JM. Study of reverse osmosis membranes fouling by inorganic salts and colloidal particles during seawater desalination. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Direct contact membrane distillation of refining waste stream from precious metal recovery: Chemistry of silica and chromium (III) in membrane scaling. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117803] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Sun H, Liu Y, Li D, Liu B, Yao J. Hydrophobic SiO
2
nanoparticle‐induced polyvinylidene fluoride crystal phase inversion to enhance permeability of thin film composite membrane. J Appl Polym Sci 2019. [DOI: 10.1002/app.48204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Sun
- School of EnvironmentHarbin Institute of Technology Harbin 150090 China
- State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of Technology Harbin 150090 P. R. China
| | - Yijun Liu
- National Engineering Center of Urban Water Resources, 202 Hehai Road Harbin 150090 China
| | - Dan Li
- School of EnvironmentHarbin Institute of Technology Harbin 150090 China
- State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of Technology Harbin 150090 P. R. China
| | - Bing Liu
- School of EnvironmentHarbin Institute of Technology Harbin 150090 China
- State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of Technology Harbin 150090 P. R. China
| | - Jie Yao
- School of EnvironmentHarbin Institute of Technology Harbin 150090 China
- State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of Technology Harbin 150090 P. R. China
- National Engineering Center of Urban Water Resources, 202 Hehai Road Harbin 150090 China
| |
Collapse
|