1
|
Wang H, Wang R, Xu M, Dai X, Dai J. Zwitterionic-enhanced hyperbranched polysiloxane membrane with advanced anti-crude oil fouling for high-efficient oil-in-water emulsion separation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125391. [PMID: 40250181 DOI: 10.1016/j.jenvman.2025.125391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/30/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Membrane fouling, attributed to the adhesion of oil droplets, presents a significant challenge to membrane separation technology. The hydrophilic surface modification of polymer membranes has been proven as an effective antifouling strategy. Here, a novel zwitterionic hyperbranched polysiloxane modificated membrane (ZHBPSi@PDA@M) was synthesized through oxidative self-polymerization to form the polydopamine (PDA) adhesion layer, Michael addition, and ring-opening reaction. The surface of ZHBPSi@PDA@M achieved the superhydrophilic modification, acquiring an underwater oil contact angle of 158.6°. Furthermore, the membrane had a high water permeance of 13,924 L m-2 h-1 bar-1, representing a 29-fold increase compared to the nascent membrane, and achieved excellent separation of various oil-in-water emulsions, with permeance and rejection efficiency of 5534 L m-2 h-1 bar-1 and 99.9 %, respectively. Additionally, the ZHBPSi@PDA@M not only achieved excellent acid-base stability, but also possessed good self-cleaning and anti-fouling properties. Moreover, the composite membrane effectively separated crude oil emulsions, achieving a permeance of 3986 L m-2 h-1 bar-1 and a separation efficiency of 98.3 %, thereby offering a novel approach for the treatment of high-viscosity oil-containing wastewater.
Collapse
Affiliation(s)
- Hongren Wang
- Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, 136000, China; College of Mathematics and Computer, Jilin Normal University, Siping, 136000, China
| | - Ruifang Wang
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013, China
| | - Man Xu
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaohui Dai
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013, China.
| | - Jiangdong Dai
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Mollahosseini A, Bahig J, Shoker A, Abdelrasoul A. Aminolysis-Based Zwitterionic Immobilization on Polyethersulfone Membranes for Enhanced Hemocompatibility: Experimental, Computational, and Ex Vivo Investigations. Biomimetics (Basel) 2024; 9:320. [PMID: 38921200 PMCID: PMC11201488 DOI: 10.3390/biomimetics9060320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/27/2024] Open
Abstract
Dialysis membranes are not hemocompatible with human blood, as the patients are suffering from the blood-membrane interactions' side effects. Zwitterionic structures have shown improved hemocompatibility; however, their complicated synthesis hinders their commercialization. The goal of the study is to achieve fast functionalization for carboxybetaine and sulfobetaine zwitterionic immobilization on PES membranes while comparing the stability and the targeted hemocompatibility. The chemical modification approach is based on an aminolysis reaction. Characterization, computational simulations, and clinical analysis were conducted to study the modified membranes. Atomic force microscopy (AFM) patterns showed a lower mean roughness for carboxybetaine-modified (6.3 nm) and sulfobetaine-modified (7.7 nm) membranes compared to the neat membrane (52.61 nm). The pore size of the membranes was reduced from values above 50 nm for the neat PES to values between 2 and 50 nm for zwitterionized membranes, using Brunauer-Emmett-Teller (BET) analysis. More hydrophilic surfaces led to a growth equilibrium water content (EWC) of nearly 6% for carboxybetaine and 10% for sulfobetaine-modified membranes. Differential scanning calorimetry (DSC) measurements were 12% and 16% stable water for carboxybetaine- and sulfobetaine-modified membranes, respectively. Sulfobetaine membranes showed better compatibility with blood with respect to C5a, IL-1a, and IL-6 biomarkers. Aminolysis-based zwitterionization was found to be suitable for the improvement of hemodialysis membranes. The approach introduced in this paper could be used to modify the current dialysis membranes with minimal change in the production facilities.
Collapse
Affiliation(s)
- Arash Mollahosseini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Jumanah Bahig
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B, Canada
| | - Ahmed Shoker
- Saskatchewan Transplant Program, St. Paul’s Hospital, 1702 20th Street West, Saskatoon, SK S7M 0Z9, Canada
- Nephrology Division, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Amira Abdelrasoul
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
3
|
Mallya DS, Yang G, Lei W, Muthukumaran S, Baskaran K. Tuning nanofiltration membrane performance: OH-MoS 2 nanosheet engineering and divalent cation influence on fouling and organic removal. DISCOVER NANO 2023; 18:131. [PMID: 37870641 PMCID: PMC10593713 DOI: 10.1186/s11671-023-03909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Natural organic matter (NOM) present in surface water causes severe organic fouling of nanofiltration (NF) membranes employed for the production of potable water. Calcium (Ca2+) and magnesium (Mg2+) are alkaline earth metals present in natural surface water and severely exacerbate organic fouling owing to their ability to cause charge neutralization, complexation, and bridging of NOM and the membrane surface. Hence, it is of practical significance to engineer membranes with properties suitable for addressing organic fouling in the presence of these cations. This study employed OH-functionalized molybdenum disulphide (OH-MoS2) nanosheets as nanofillers via the interfacial polymerization reaction to engineer NF membranes for enhanced removal of NOM and fouling mitigation performance. At an optimized concentration of 0.010 wt.% of OH-MoS2 nanosheet, the membrane was endowed with higher hydrophilicity, negative charge and rougher membrane morphology which enhanced the pure water permeance by 46.33% from 11.2 to 16.39 L m-2 h-1 bar-1 while bridging the trade-off between permeance and salt selectivity. The fouling performance was evaluated using humic acid (HA) and sodium alginate (SA), which represent the hydrophobic and hydrophilic components of NOM in the presence of 0, 0.5, and 1 mM Ca2+ and Mg2+, respectively, and the performance was benchmarked with control and commercial membranes. The modified membrane exhibited normalized fluxes of 95.09% and 93.26% for HA and SA, respectively, at the end of the 6 h filtration experiments, compared to the control membrane at 89.71% and 74.25%, respectively. This study also revealed that Ca2+ has a more detrimental effect than Mg2+ on organic fouling and NOM removal. The engineered membrane outperformed the commercial and the pristine membranes during fouling tests in the presence of 1 mM Ca2+ and Mg2+ in the feed solution. In summary, this study has shown that incorporating OH-MoS2 nanosheets into membranes is a promising strategy for producing potable water from alternative water sources with high salt and NOM contents.
Collapse
Affiliation(s)
| | - Guoliang Yang
- Institute of Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC, 3220, Australia
| | - Weiwei Lei
- Institute of Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC, 3220, Australia
| | - Shobha Muthukumaran
- Institute for Sustainability Industries and Liveable Cities, Victoria University, Melbourne, VIC, 3011, Australia
- College of Sport, Health and Engineering, Victoria University, Melbourne, VIC, 3011, Australia
| | - Kanagaratnam Baskaran
- School of Engineering, Deakin University, Waurn Ponds, Geelong, VIC, 3216, Australia
| |
Collapse
|
4
|
Mallya DS, Abdikheibari S, Dumée LF, Muthukumaran S, Lei W, Baskaran K. Removal of natural organic matter from surface water sources by nanofiltration and surface engineering membranes for fouling mitigation - A review. CHEMOSPHERE 2023; 321:138070. [PMID: 36775036 DOI: 10.1016/j.chemosphere.2023.138070] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Given that surface water is the primary supply of drinking water worldwide, the presence of natural organic matter (NOM) in surface water presents difficulties for water treatment facilities. During the disinfection phase of the drinking water treatment process, NOM aids in the creation of toxic disinfection by-products (DBPs). This problem can be effectively solved using the nanofiltration (NF) membrane method, however NOM can significantly foul NF membranes, degrading separation performance and membrane integrity, necessitating the development of fouling-resistant membranes. This review offers a thorough analysis of the removal of NOM by NF along with insights into the operation, mechanisms, fouling, and its controlling variables. In light of engineering materials with distinctive features, the potential of surface-engineered NF membranes is here critically assessed for the impact on the membrane surface, separation, and antifouling qualities. Case studies on surface-engineered NF membranes are critically evaluated, and properties-to-performance connections are established, as well as challenges, trends, and predictions for the field's future. The effect of alteration on surface properties, interactions with solutes and foulants, and applications in water treatment are all examined in detail. Engineered NF membranes containing zwitterionic polymers have the greatest potential to improve membrane permeance, selectivity, stability, and antifouling performance. To support commercial applications, however, difficulties related to material production, modification techniques, and long-term stability must be solved promptly. Fouling resistant NF membrane development would be critical not only for the water treatment industry, but also for a wide range of developing applications in gas and liquid separations.
Collapse
Affiliation(s)
| | | | - Ludovic F Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Shobha Muthukumaran
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, 8001, Australia
| | - Weiwei Lei
- Institute of Frontier Materials, Deakin University, Waurn Ponds, Geelong, Victoria. 3220, Australia
| | - Kanagaratnam Baskaran
- School of Engineering, Deakin University, Waurn Ponds, Geelong, Victoria, 3216, Australia
| |
Collapse
|
5
|
Multi-carboxyl based zwitterionic nanofiltration membrane with ion selectivity and anti-scaling performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
6
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
7
|
Wu B, Wang N, Shen Y, Jin CG, An QF. Inorganic salt regulated zwitterionic nanofiltration membranes for antibiotic/monovalent salt separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Trimethylamine N-oxide-derived zwitterionic polyamide thin-film composite nanofiltration membranes with enhanced anti-dye deposition ability for efficient dye separation and recovery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Valerie Maggay I, Lin HP, Abebe Geleta T, Chang Y, Huang YT, Venault A. 3 stage filtration system utilizing 3 distinct membranes derived from one single dope solution and finely-tuned phase inversion processes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Zhou H, Dai R, Wang T, Wang Z. Enhancing Stability of Tannic Acid-Fe III Nanofiltration Membrane for Water Treatment: Intercoordination by Metal-Organic Framework. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17266-17277. [PMID: 36399419 DOI: 10.1021/acs.est.2c05048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tannic acid (TA)-FeIII nanofiltration (NF) membrane has been demonstrated to possess more favorable removal of trace organic contaminants (TrOCs) over the conventional polyamide NF membrane. However, the drawback of acid instability severely hinders the practical application of TA-FeIII NF membrane in the treatment of (weak) acidic wastewater containing TrOCs (e.g., pharmaceutical wastewater, surface water, and drinking water). Herein, we introduced the MIL-101(Cr) nanoparticle, a kind of metal-organic framework (MOF), into the TA-FeIII selective layer to enhance the membrane acid stability. The acid-tolerance parameter of MIL-101(Cr)-stabilized TA-FeIII membrane (TA-FeIII-MOF membrane, 12,000 ppm/s-1) was two orders of magnitude larger than that of the TA-FeIII membrane (50 ppm/s-1), and the TA-FeIII-MOF membrane can withstand acid treatment at pH = 4 for more than 30 days. Meanwhile, the TA-FeIII-MOF membrane displayed increased water permeance from 9.5 to 12.7 L/(m2·h·bar) after the MOF addition, without compromising the selectivity. The enhanced acid stability for the TA-FeIII-MOF membrane was ascribed to an intercoordination mechanism, where FeIII centers (from TA-FeIII complex) coordinated with -COOH groups (from terephthalic acid of MOF) and CrIII centers (from MOF) coordinated with -OH groups (from TA of TA-FeIII complex), which was verified by the density functional theory calculation. This study highlights a new approach for the development of a TA-FeIII-based NF membrane with markedly enhanced acid stability, which is important for its real application in wastewater treatment and water reuse.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Tianlin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| |
Collapse
|
11
|
Lei X, Lian Q, Zhang X, Wang T, Gee M, Holmes W, Jin S, Ponnusamy SK, Gang DD, Zappi ME. Removal of perfluorooctanoic acid via polyethyleneimine modified graphene oxide: Effects of water matrices and understanding mechanisms. CHEMOSPHERE 2022; 308:136379. [PMID: 36088978 DOI: 10.1016/j.chemosphere.2022.136379] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
This research aimed to evaluate the adsorption behaviors and mechanisms of perfluorooctanoic acid (PFOA) onto polyethyleneimine modified graphene oxide (GO-PEI) from aqueous solutions. The adsorption capacity was significantly improved by doping polyethyleneimine (PEI) onto graphene oxide (GO). The Brunauer-Emmett-Teller (BET) isotherm model was considered as the best isotherm model in describing the PFOA adsorption onto GO-PEI3 (wPEI/wGO = 3). GO-PEI3 exhibited high adsorption capacity (qe = 368.2 mg/g, calculated from BET isotherm model) and excellent stability. The maximum monolayer amount of PFOA adsorption onto GO-PEI3 (qm = 231.2 mg/g) was successfully evaluated. The calculated saturated concentration (Cs = 169.9 mg/L) of PFOA on GO-PEI3 closely agrees with its critical micelle concentration (CMC = 157.0 mg/L), suggesting the formation of multilayer hemi-micelles or micelles PFOA structures on the surface of GO-PEI3. PFOA adsorption onto GO-PEI3 was inhibited by several factors including: the presence of humic acid (HA) by competing with the adsorption sites, background salts through the double-layer compression effect, and the competition from soluble ions for the amine or amide functional groups on GO-PEI3. Finally, both the FT-IR and XPS results confirmed that the adsorption of PFOA onto GO-PEI3 was through electrostatic attraction and hydrophobic interaction (physical adsorption), but not chemical adsorption. This work provides fundamental knowledge both in understanding the adsorption behavior through the BET isotherm model and in developing a stable adsorbent for PFOA adsorption. In addition, the findings highlight the potential of PFOA remediation from wastewater systems using GO-PEI in engineering applications.
Collapse
Affiliation(s)
- Xiaobo Lei
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Xu Zhang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, School of Civil Engineering, Beijing Jiaotong University, Shangyuancun, Beijing, 100044, PR China
| | - Tiejun Wang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Nanyang Vocational College of Agriculture, Nanyang, 473000, PR China
| | - Michael Gee
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Department of Engineering, University of California, Berkeley, CA, 94720, USA
| | - William Holmes
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Tamil Nadu, India
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA.
| | - Mark E Zappi
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| |
Collapse
|
12
|
One-step fabrication of robust polyvinyl chloride loose nanofiltration membranes by synthesizing a novel polyether amine grafted styrene-maleic anhydride copolymer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Carboxylated-covalent organic frameworks and chitosan assembled membranes for precise and efficient dye separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Liu L, Liu Y, Chen X, Feng S, Wan Y, Lu H, Luo J. A nanofiltration membrane with outstanding antifouling ability: Exploring the structure-property-performance relationship. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Sun S, Han L, Hou J, Yang Y, Yue J, Gu G, Chuah CY, Li J, Zhang Z. Single-walled carbon nanotube gutter layer supported ultrathin zwitterionic microporous polymer membrane for high-performance lithium-sulfur battery. J Colloid Interface Sci 2022; 628:1012-1022. [PMID: 35970127 DOI: 10.1016/j.jcis.2022.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 01/29/2023]
Abstract
Development of efficient lithium-sulfur (Li-S) battery requires the need to develop an appropriate functional separator that allows strong facilitation and transport of lithium ions together with limited passage of polysulfides. In this work, a multifunctional separator (TB-BAA/SWCNT/PP) is developed through spin coating of a novel zwitterionic microporous polymer (TB-BAA) on the gutter layer constructed from single-walled carbon nanotubes (SWCNT), where commercially available polypropylene (PP) separator is used to act as the mechanical support. SWCNT in this study serves as the first modification layer to decrease the size of the macropores in the PP separator, while the ultrathin TB-BAA top barrier layer with the presence of zwitterionic side chains allows the creation of confined ionic channels with both lithiophilic and sulfophilic groups. Due to the presence of available chemical interactions with lithium polysulfides, selective ion transport can be foreseen through such separator. In this regard, shuttle effect that is frequently encountered in Li-S battery can be suppressed effectively via implementing the as-obtained functional separator, resulting in the creation of credible and stable sulfur electrochemistry. The TB-BAA/SWCNT/PP-based Li-S battery has been investigated to possess high cycling ability (capacity fading per cycle of 0.055% over 500 cycles at 1 C) together with decent rate capability (736.6 mAh g-1 at 3 C). In addition, a high areal capacity retention of 5.03 mAh cm-2 after 50 cycles can be also obtained under raised sulfur loading (5.4 mg cm-2).
Collapse
Affiliation(s)
- Shuzheng Sun
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China
| | - Lu Han
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China
| | - Jingjing Hou
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China
| | - Yanqin Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China.
| | - Junbo Yue
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China
| | - Guoxian Gu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China
| | - Chong Yang Chuah
- Department of Chemical Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar, 32610 Perak, Malaysia; CO(2) Research Centre (CO2RES), Institute of Contaminant Management, Universiti Teknologi Petronas, Bandar Seri Iskandar, 32610 Perak, Malaysia.
| | - Jingde Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China.
| | - Zisheng Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China; Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
16
|
Zhang X, Tian J, Xu R, Cheng X, Zhu X, Loh CY, Fu K, Zhang R, Wu D, Ren H, Xie M. In Situ Chemical Modification with Zwitterionic Copolymers of Nanofiltration Membranes: Cure for the Trade-Off between Filtration and Antifouling Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28842-28853. [PMID: 35709360 PMCID: PMC9247986 DOI: 10.1021/acsami.2c05311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Breaking the trade-off between filtration performance and antifouling property is critical to enabling a thin-film nanocomposite (TFC) nanofiltration (NF) membrane for a wide range of feed streams. We proposed a novel design route for TFC NF membranes by grafting well-defined zwitterionic copolymers of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) and 2-aminoethyl methacrylate hydrochloride (AEMA) on the polyamide surfaces via an in situ surface chemical modification process. The successful grafting of a zwitterionic copolymer imparted the modified NF membranes with better surface hydrophilicity, a larger actual surface area (i.e., nodular structures), and a thinner polyamide layer. As a result, the water permeability of the modified membrane (i.e., TFC-10) was triple that of the pristine TFC membrane while maintaining high Na2SO4 rejection. We further demonstrated that the TFC-10 membrane possessed exceptional antifouling properties in both static adsorption tests and three cycles of dynamic protein and humic acid fouling tests. To recap, this work provides valuable insights and strategies for the fabrication of TFC NF membranes with simultaneously enhanced filtration performance and antifouling property.
Collapse
Affiliation(s)
- Xinyu Zhang
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jiayu Tian
- School
of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China
| | - Ruiyang Xu
- International
Education School, Shandong Polytechnic College
(SDPC), Jining 272100, PR China
| | - Xiaoxiang Cheng
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xuewu Zhu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ching Yoong Loh
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Kaifang Fu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ruidong Zhang
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Daoji Wu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
- .
Phone: +44(0)1225 383246
| | - Huixue Ren
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ming Xie
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| |
Collapse
|
17
|
Chen L, Ren X, Li Y, Hu D, Feng X, Li W. Enhancing interface compatibility of UiO-66-NH2 and polyamide by incorporating dopamine into thin film nanocomposite membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Wu B, Wang N, Lei JH, Shen Y, An QF. Intensification of mass transfer for zwitterionic amine monomers in interfacial polymerization to fabricate monovalent salt/antibiotics separation membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Ang MBMY, Deang ABG, Chiao YH, Aquino RR, Millare JC, Huang SH, Tsai HA, Lee KR. Integrating nanoclay intercalated with interlayers of cationic surfactant into thin-film nanocomposite nanofiltration membranes to improve performance and antifouling property. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Huang T, Yin J, Tang H, Zhang Z, Liu D, Liu S, Xu Z, Li N. Improved permeability and antifouling performance of Tröger's base polymer-based ultrafiltration membrane via zwitterionization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Nazari S, Abdelrasoul A. Surface Zwitterionization of HemodialysisMembranesfor Hemocompatibility Enhancement and Protein-mediated anti-adhesion: A Critical Review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
22
|
oulad F, Zinadini S, Akbar Zinatizadeh A, Ashraf Derakhshan A. Preparation and characterization of high permeance functionalized nanofiltration membranes with antifouling properties by using diazotization route and potential application for licorice wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Xue Q, Zhang K. MXene nanocomposite nanofiltration membrane for low carbon and long-lasting desalination. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119808] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Zhang F, Tan L, Gong L, Liu S, Fang W, Wang Z, Gao S, Jin J. Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Chlorine-resistant positively charged polyamide nanofiltration membranes for heavy metal ions removal. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Zhang Z, Xiao X, Zhou Y, Huang L, Wang Y, Rong Q, Han Z, Qu H, Zhu Z, Xu S, Tang J, Chen J. Bioinspired Graphene Oxide Membranes with pH-Responsive Nanochannels for High-Performance Nanofiltration. ACS NANO 2021; 15:13178-13187. [PMID: 34210144 DOI: 10.1021/acsnano.1c02719] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tunable gating graphene oxide (GO) membranes with high water permeance and precise molecular separation remain highly desired in smart nanofiltration devices. Herein, bioinspired by the filtration function of the renal glomerulus, we report a smart and high-performance graphene oxide membrane constructed via introducing positively charged polyethylenimine-grafted GO (GO-PEI) to negatively charged GO nanosheets. It was found that the additional GO-PEI component changed the surface charge, improved the hydrophilicity, and enlarged the nanochannels. The glomerulus-inspired graphene oxide membrane (G-GOM) shows a water permeance up to 88.57 L m-2 h-1 bar-1, corresponding to a 4 times enhancement compared with that of a conventional GO membrane due to the enlarged confined nanochannels. Meanwhile, owing to the electrostatic interaction, it can selectively remove positively charged methylene blue at pH 12 and negatively charged methyl orange at pH 2, with a removal rate of over 96%. The high and cyclic water permeance and highly selective organic removal performance can be attributed to the synergic effect of controlled nanochannel size and tunable electrostatic interaction in responding to the environmental pH. This strategy provides insight into designing pH-responsive gating membranes with tunable selectivity, representing a great advancement in smart nanofiltration with a wide range of applications.
Collapse
Affiliation(s)
- Zhijie Zhang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Linjun Huang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qinglin Rong
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhenyang Han
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Huaijiao Qu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhijun Zhu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shumao Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
27
|
Han IK, Han J, Kim YS. Liquid-to-Solid Phase Transitions of Imidazolium-Based Zwitterionic Polymers Induced by Hofmeister Anions. Chem Asian J 2021; 16:1897-1900. [PMID: 34018681 DOI: 10.1002/asia.202100502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/21/2021] [Indexed: 11/12/2022]
Abstract
In this study, we compared the responses of two different types of zwitterionic polymers (ZPs), polyvinylimidzole sulfobetaine (poly(SBVI)) and polymethacrylate sulfobetaine (poly(SBMA)) to Hofmeister anions. Although the anions of the two ZPs were the same as the sulfonate anions and only the types of their cations were different from each other, the aggregation behavior of each in the salt aqueous solution was remarkably different. Consequently, poly(SBVI) exhibited both salting-in and salting-out effects depending on the type and concentration of salt, while poly(SBMA) only exhibited the anti-polyelectrolyte effect. The results of this study provide a deeper understanding of the behavior of zwitterionic polymers in salt solutions and will greatly expand their applications.
Collapse
Affiliation(s)
- Im Kyung Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, 37673, Pohang, Gyeongbuk, South Korea
| | - Jihoon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, 37673, Pohang, Gyeongbuk, South Korea
| | - Youn Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, 37673, Pohang, Gyeongbuk, South Korea
| |
Collapse
|
28
|
Wang F, Zheng T, Wang P, Chen M, Wang Z, Jiang H, Ma J. Enhanced Water Permeability and Antifouling Property of Coffee-Ring-Textured Polyamide Membranes by In Situ Incorporation of a Zwitterionic Metal-Organic Framework. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5324-5334. [PMID: 33728905 DOI: 10.1021/acs.est.0c07122] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modulation of the polyamide structure is critically important for the reverse-osmosis performance of thin-film composite (TFC) membranes in the field of water reuse and desalination. Herein, zwitterionic nanoparticles of zeolitic imidazolate framework-8 (PZ@ZIF-8) were fabricated and incorporated into the polyamide active layer through the interfacial polymerization method. A hydrophilic, zwitterionic coffee-ring structure was formed on the surface of polyamide thin-film nanocomposite (TFN) membranes due to the adjusted diffusion rate of m-phenylenediamine (MPD) from the aqueous phase into the organic phase during the interfacial polymerization process. Surface characterization demonstrated that the coffee-ring structure increased the amounts of water transport channels on the membrane surface and the intrinsic pores of PZ@ZIF-8 maintained the salt rejection. Antifouling and bactericidal activities of TFN membranes were enhanced remarkably owing to the bacterial-"defending" and bacterial-"attacking" behaviors of hydrophilic and zwitterionic groups from PZ@ZIF-8 nanoparticles. This work would provide a promising method for the application of MOFs to enhance the bio-/organic-fouling resistance of TFN membranes with high water permeation and salt rejection.
Collapse
Affiliation(s)
- Feihong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Panpan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mansheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ziyue Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haicheng Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
29
|
Deng L, Li S, Qin Y, Zhang L, Chen H, Chang Z, Hu Y. Fabrication of antifouling thin-film composite nanofiltration membrane via surface grafting of polyethyleneimine followed by zwitterionic modification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118564] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Vatanpour V, Mousavi Khadem SS, Masteri-Farahani M, Mosleh N, Ganjali MR, Badiei A, Pourbashir E, Mashhadzadeh AH, Tajammal Munir M, Mahmodi G, Zarrintaj P, Ramsey JD, Kim SJ, Saeb MR. Anti-fouling and permeable polyvinyl chloride nanofiltration membranes embedded by hydrophilic graphene quantum dots for dye wastewater treatment. JOURNAL OF WATER PROCESS ENGINEERING 2020; 38:101652. [DOI: 10.1016/j.jwpe.2020.101652] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
|
31
|
Saadati S, Westphalen H, Eduok U, Abdelrasoul A, Shoker A, Choi P, Doan H, Ein-Mozaffari F, Zhu N. Biocompatibility enhancement of hemodialysis membranes using a novel zwitterionic copolymer: Experimental, in situ synchrotron imaging, molecular docking, and clinical inflammatory biomarkers investigations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111301. [DOI: 10.1016/j.msec.2020.111301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
|
32
|
Zheng H, Mou Z, Zhou K. Incorporation of Core-Shell-Structured Zwitterionic Carbon Dots in Thin-Film Nanocomposite Membranes for Simultaneously Improved Perm-Selectivity and Antifouling Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53215-53229. [PMID: 33185418 DOI: 10.1021/acsami.0c13386] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of highly efficient thin-film nanocomposite (TFN) membranes with superior water permeability, maintained rejection performance, and excellent antifouling capacity is critical to meeting the ever-escalating demand for fresh water. Herein, carbon dots (CDs) grafted with hyperbranched zwitterions, denoted as CDs-ZPEI0.6-10k, were first prepared by the hydrothermal treatment of citric acid in the presence of zwitterionic hyperbranched polyethylenimine (ZPEI0.6-10k) with different molecular weights (0.6, 1.8, and 10 kDa). Subsequently, the synthesized nanoparticles were introduced in membrane fabrication to form CDs-ZPEI0.6-10k-embedded TFN (TFN-CDs-ZPEI0.6-10k) membranes. The grafted shells of superhydrophilic ZPEI not only increased the chemical compatibility of CDs in the polyamide layer to suppress the formation of nonselective voids but also created a densely packed network for efficient water transportation and effective divalent salt rejection. The TFN-CDs-ZPEI10k membrane demonstrated a 2.8-fold enhancement in the permeate flux with an increased Na2SO4 rejection rate of 98.1% and improved antifouling properties than the pristine thin-film composite (TFC) membrane. This work provides an insight into the development of functionalized core-shell structured nanoparticles to effectively overcome the permeability-selectivity trade-off limitations and fouling problems in TFC membranes.
Collapse
Affiliation(s)
- Han Zheng
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Zihao Mou
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, PR China
| | - Kun Zhou
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
33
|
Shen L, Xie Q, Hong Z, Wu C, Yu T, Fang H, Xiong Y, Zhang G, Lu Y, Shao W. Facile Strategy to Construct High-Performance Nanofiltration Membranes by Synergy of Graphene Oxide and Polyvinyl Alcohol. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lufang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Quanling Xie
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China
| | - Zhuan Hong
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China
| | - Chenpu Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Tong Yu
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China
| | - Hua Fang
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China
| | - Ying Xiong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Wenyao Shao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
34
|
Zhang H, He Q, Luo J, Wan Y, Darling SB. Sharpening Nanofiltration: Strategies for Enhanced Membrane Selectivity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39948-39966. [PMID: 32805813 DOI: 10.1021/acsami.0c11136] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanofiltration plays an increasingly large role in many industrial applications, such as water treatment (e.g., desalination, water softening, and fluoride removal) and resource recovery (e.g., alkaline earth metals). Energy consumption and benefits of nanofiltration processes are directly determined by the selectivity of the nanofiltration membranes, which is largely governed by pore-size distribution and Donnan effects. During operation, the separation performance of unmodified nanofiltration membranes will also be impacted (deleteriously) upon unavoidable membrane fouling. Many efforts, therefore, have been directed toward enhancing the selectivity of nanofiltration membranes, which can be classified into membrane fabrication method improvement and process intensification. This review summarizes recent developments in the field and provides guidance for potential future approaches to improve the selectivity of nanofiltration membranes.
Collapse
Affiliation(s)
- Huiru Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Chemical Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Qiming He
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Seth B Darling
- Chemical Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
35
|
Liu M, He Q, Zhang K, Guo Z, Lü Z, Yu S, Gao C. Carbodiimide-assisted zwitterionic modification of poly(piperazine amide) thin-film composite membrane for enhanced separation and anti-depositing performances to cationic/anionic dye aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122582. [PMID: 32334289 DOI: 10.1016/j.jhazmat.2020.122582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
In this work, a novel method of carbodiimide-assisted zwitterionic modification was proposed and implemented to incorporate zwitterionic moieties onto poly(piperazine amide) membrane for improved water permeability and anti-depositing property, which are crucial for highly efficient nanofiltration of dye-contained effluents. Carboxyl groups of polyamide layer were firstly transferred into N-acylurea using excess l-ethyl-3-(3-(dimethylamino)propyl)-carbodiimide. Zwitterions were then incorporated through ring-opening reaction between tertiary amine groups of N-acylurea and 1, 4-butanesultone. Carbodiimide-assisted zwitterionic modification was verified by ATR-IR and XPS analyses and was found to not affect membrane pore size but significantly enhance membrane's permeation and anti-dye-deposition performances. Compared with those of virgin membrane, water permeabilities of the desired zwitterionic membrane to pure water, Congo red aqueous solution and Victoria blue B aqueous solution were higher by 42.9, 62.3 and 95.2 %, respectively, hydraulic resistances from irreversible deposition of Congo red and Victoria blue B molecules were dramatically lowered by 68.4 and 91.8 %, respectively. Furthermore, the perm-selectivity performance of the desired zwitterionic membrane in terms of molecular weight cut-off and pure water permeability was better than most of the reported zwitterionic membranes, and the separation and anti-depositing performances to both anionic and cationic dye aqueous solutions were better than commercial membrane NF270.
Collapse
Affiliation(s)
- Meihong Liu
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qingyuan He
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Kaifei Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhongwei Guo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhenhua Lü
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Sanchuan Yu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Congjie Gao
- The Development Center of Water Treatment Technology, SOA, Hangzhou 310012, People's Republic of China
| |
Collapse
|
36
|
Tan L, Gong L, Wang S, Zhu Y, Zhang F, Zhang Y, Jin J. Superhydrophilic Sub-1-nm Porous Membrane with Electroneutral Surface for Nonselective Transport of Small Organic Molecules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38778-38787. [PMID: 32846469 DOI: 10.1021/acsami.0c10272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study of traditional Chinese medicines (TCMs) is receiving increasing attention worldwide because of their contribution to human health. Developing an effective and sustainable method for screening TCMs is highly desired to accelerate the modernization of TCMs. In this work, we report a neutrally charged membrane made of a positively charged polyelectrolyte electrostatically assembled on a negatively charged superhydrophilic nanoporous membrane. The composite membrane possesses stable electroneutrality in a wide pH range and can precisely and nonselectively separate various charged molecules in TCMs with a transmittance higher than 90% for molecules with molecular weight (Mw) < 400 and a high rejection of 90% for molecules with Mw > 800. In addition, the membrane exhibits a superior antifouling performance, and the recovery ratio observed during a continuous cycling test of a simulated TCM solution was more than 93%. The combination of superhydrophilicity and electroneutrality in a nanoporous membrane provides a new route for designing nanofiltration membranes for highly efficient molecule separation and is promising for screening TCMs.
Collapse
Affiliation(s)
- Lu Tan
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Li Gong
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Siyan Wang
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yuzhang Zhu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Feng Zhang
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
37
|
Huang BQ, Tang YJ, Zeng ZX, Xue SM, Ji CH, Xu ZL. High-Performance Zwitterionic Nanofiltration Membranes Fabricated via Microwave-Assisted Grafting of Betaine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35523-35531. [PMID: 32667769 DOI: 10.1021/acsami.0c12704] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The thin-film composite (TFC) nanofiltration (NF) membrane is a very important method in solving the water crisis. However, the fabrication and industrialization of high-performance NF membranes still remains challenging. In this work, zwitterionic NF membranes via microwave-assisted grafting of betaine was first proposed. The resulting polyamide layer showed leaflike nanostructures after modification. Because of the enlarged permeation area and enhanced hydrophilicity derived from the unique leaflike structure, the optimal membrane permeability reached 40.8 L m-1 h-1 bar-1. This water permeance was 2.2 times as high as the original polypiperazine-amide membrane, with a Na2SO4 rejection maintained at 97.0%. More importantly, the membrane demonstrated excellent selectivity to monovalent and divalent anions. This zwitterionic membrane fabricated by microwave-assisted grafting of betaine provides new insight for industrial scalable NF membranes with great potentials.
Collapse
Affiliation(s)
- Ben-Qing Huang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Yong-Jian Tang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Zuo-Xiang Zeng
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Shuang-Mei Xue
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Chen-Hao Ji
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
38
|
Shan X, Li SL, Fu W, Hu Y, Gong G, Hu Y. Preparation of high performance TFC RO membranes by surface grafting of small-molecule zwitterions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Xu W, Li S, Ye Z, Zhang J, Deng L, Dong A. Optimization of sulfonated polyethyleneimine zwitterionic coating mediated by polydopamine for poly(vinyl chloride) antifouling. J Appl Polym Sci 2020. [DOI: 10.1002/app.49636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wei Xu
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Shuangyang Li
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Zhanpeng Ye
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Jianhua Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Liandong Deng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Anjie Dong
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| |
Collapse
|
40
|
Pandey RP, Rasheed PA, Gomez T, Azam RS, Mahmoud KA. A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2TX (MXene)/cellulose acetate. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118139] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
A facile approach from waste to resource: Reclaimed rubber-derived membrane for dye removal. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Wang J, Ding M, Cheng X, Ye C, Li F, Li Y, You J. Hierarchically porous membranes with isolated-round-pores connected by narrow-nanopores: A novel solution for trade-off effect in separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
|
44
|
Yang S, Jiang Q, Zhang K. Few-layers 2D O–MoS2 TFN nanofiltration membranes for future desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118052] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
45
|
Lü Z, Guo Z, Zhang K, Yu S, Liu M, Gao C. Separation and anti-dye-deposition properties of polyamide thin-film composite membrane modified via surface tertiary amination followed by zwitterionic functionalization. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Wang C, Feng Y, Chen J, Bai X, Ren L, Wang C, Huang K, Wu H. Nanofiltration membrane based on graphene oxide crosslinked with zwitterion-functionalized polydopamine for improved performances. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Li D, Wei Q, Wu C, Zhang X, Xue Q, Zheng T, Cao M. Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems. Adv Colloid Interface Sci 2020; 278:102141. [PMID: 32213350 DOI: 10.1016/j.cis.2020.102141] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Abstract
In recent years, zwitterionic polymers have been frequently reported to modify various surfaces to enhance hydrophilicity, antifouling and antibacterial properties, which show significant potentials particularly in biological systems. This review focuses on the fabrication, properties and various applications of zwitterionic polymer grafted surfaces. The "graft-from" and "graft-to" strategies, surface grafting copolymerization and post zwitterionization methods were adopted to graft lots type of the zwitterionic polymers on different inorganic/organic surfaces. The inherent hydrophilicity and salt affinity of the zwitterionic polymers endow the modified surfaces with antifouling, antibacterial and lubricating properties, thus the obtained zwitterionic surfaces show potential applications in biosystems. The zwitterionic polymer grafted membranes or stationary phases can effectively separate plasma, water/oil, ions, biomolecules and polar substrates. The nanomedicines with zwitterionic polymer shells have "stealth" effect in the delivery of encapsulated drugs, siRNA or therapeutic proteins. Moreover, the zwitterionic surfaces can be utilized as wound dressing, self-healing or oil extraction materials. The zwitterionic surfaces are expected as excellent support materials for biosensors, they are facing the severe challenges in the surface protection of marine facilities, and the dense ion pair layers may take unexpected role in shielding the grafted surfaces from strong electromagnetic field.
Collapse
|
48
|
Liao J, Yu X, Chen Q, Gao X, Ruan H, Shen J, Gao C. Monovalent anion selective anion-exchange membranes with imidazolium salt-terminated side-chains: Investigating the effect of hydrophobic alkyl spacer length. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117818] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Tang SH, Venault A, Hsieh C, Dizon GV, Lo CT, Chang Y. A bio-inert and thermostable zwitterionic copolymer for the surface modification of PVDF membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Surface hydrophilic modification of PVDF membranes based on tannin and zwitterionic substance towards effective oil-in-water emulsion separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|