1
|
Fan Z, Chen X, Shi J, Nie H, Zhang X, Zhou X, Xie X, Xue Z. Functionalized Separators Boosting Electrochemical Performances for Lithium Batteries. NANO-MICRO LETTERS 2025; 17:128. [PMID: 39907892 PMCID: PMC11799521 DOI: 10.1007/s40820-024-01596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/08/2024] [Indexed: 02/06/2025]
Abstract
The growing demands for energy storage systems, electric vehicles, and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries. It is essential to design functional separators with improved mechanical and electrochemical characteristics. This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques. In terms of electrolyte wettability and adhesion of the coating materials, we provide an overview of the current status of research on coated separators, in situ modified separators, and grafting modified separators, and elaborate additional performance parameters of interest. The characteristics of inorganics coated separators, organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared. Future directions regarding new modified materials, manufacturing process, quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.
Collapse
Affiliation(s)
- Zixin Fan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiaoyu Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jingjing Shi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Shenzhen Senior Technology Material Co. Ltd., Shenzhen, 518000, People's Republic of China
| | - Hui Nie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Xiaoming Zhang
- Shenzhen Senior Technology Material Co. Ltd., Shenzhen, 518000, People's Republic of China
| | - Xingping Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Xiaolin Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
2
|
Hussain A, Mehmood A, Raza W, Faheem M, Saleem A, Kashif Majeed M, Iqbal R, Aziz MA. Highly Stretchable Polyurethane Porous Membranes with Adjustable Morphology for Advanced Lithium Metal Batteries. Chem Asian J 2024; 19:e202400245. [PMID: 38634677 DOI: 10.1002/asia.202400245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
A highly flexible, tunable morphology membrane with excellent thermal stability and ionic conductivity can endow lithium metal batteries with high power density and reduced dendrite growth. Herein, a porous Polyurethane (PU) membrane with an adjustable morphology was prepared by a simple nonsolvent-induced phase separation technique. The precise control of the final morphology of PU membranes can be achieved through appropriate selection of a nonsolvent, resulting a range of pore structures that vary from finger-like voids to sponge-like pores. The implementation of combinatorial DFT and experimental analysis has revealed that spongy PU porous membranes, especially PU-EtOH, show superior electrolyte wettability (472%), high porosity (75%), good mechanical flexibility, robust thermal dimensional stability (above 170 °C), and elevated ionic conductivity (1.38 mS cm-1) in comparison to the polypropylene (PP) separator. The use of PU-EtOH in Li//Li symmetric cell results in a prolonged lifespan of 800 h, surpasing the longevity of PU or PP cells. Moreover, when subjected to a high rate of 5 C, the LiFePO4/Li half-cell with a PU-EtOH porous membrane displayed better cycling performance (115.4 mAh g-1) compared to the PP separator (104.4 mAh g-1). Finally, the prepared PU porous membrane exhibits significant potential for improving the efficiency and safety of LMBs.
Collapse
Affiliation(s)
- Arshad Hussain
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Andleeb Mehmood
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Waseem Raza
- Institute for Advanced Study, Shenzhen University, Guangdong, 518060, China
| | - Muhammad Faheem
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Adil Saleem
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Muhammad Kashif Majeed
- Department of Chemistry, School of Natural Sciences, National University of science and technology, 44000, Islamabad, Pakistan
| | - Rashid Iqbal
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box, 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Du H, Wang Y, Kang Y, Zhao Y, Tian Y, Wang X, Tan Y, Liang Z, Wozny J, Li T, Ren D, Wang L, He X, Xiao P, Mao E, Tavajohi N, Kang F, Li B. Side Reactions/Changes in Lithium-Ion Batteries: Mechanisms and Strategies for Creating Safer and Better Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401482. [PMID: 38695389 DOI: 10.1002/adma.202401482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Lithium-ion batteries (LIBs), in which lithium ions function as charge carriers, are considered the most competitive energy storage devices due to their high energy and power density. However, battery materials, especially with high capacity undergo side reactions and changes that result in capacity decay and safety issues. A deep understanding of the reactions that cause changes in the battery's internal components and the mechanisms of those reactions is needed to build safer and better batteries. This review focuses on the processes of battery failures, with voltage and temperature as the underlying factors. Voltage-induced failures result from anode interfacial reactions, current collector corrosion, cathode interfacial reactions, overcharge, and over-discharge, while temperature-induced failure mechanisms include SEI decomposition, separator damage, and interfacial reactions between electrodes and electrolytes. The review also presents protective strategies for controlling these reactions. As a result, the reader is offered a comprehensive overview of the safety features and failure mechanisms of various LIB components.
Collapse
Affiliation(s)
- Hao Du
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yadong Wang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuqiong Kang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yun Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yao Tian
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xianshu Wang
- National and Local Joint Engineering Research Center of Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Yihong Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Liang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - John Wozny
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Dongsheng Ren
- Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Li Wang
- Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiangming He
- Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Peitao Xiao
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Eryang Mao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Naser Tavajohi
- Department of Chemistry, Umeå University, Umeå, 90187, Sweden
| | - Feiyu Kang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Baohua Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
4
|
Liu Y, Zeng Q, Li Z, Chen A, Guan J, Wang H, Wang S, Zhang L. Recent Development in Topological Polymer Electrolytes for Rechargeable Lithium Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206978. [PMID: 36999829 DOI: 10.1002/advs.202206978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Indexed: 05/27/2023]
Abstract
Solid polymer electrolytes (SPEs) are still being considered as a candidate to replace liquid electrolytes for high-safety and flexible lithium batteries due to their superiorities including light-weight, good flexibility, and shape versatility. However, inefficient ion transportation of linear polymer electrolytes is still the biggest challenge. To improve ion transport capacity, developing novel polymer electrolytes are supposed to be an effective strategy. Nonlinear topological structures such as hyperbranched, star-shaped, comb-like, and brush-like types have highly branched features. Compared with linear polymer electrolytes, topological polymer electrolytes possess more functional groups, lower crystallization, glass transition temperature, and better solubility. Especially, a large number of functional groups are beneficial to dissociation of lithium salt for improving the ion conductivity. Furthermore, topological polymers have strong design ability to meet the requirements of comprehensive performances of SPEs. In this review, the recent development in topological polymer electrolytes is summarized and their design thought is analyzed. Outlooks are also provided for the development of future SPEs. It is expected that this review can raise a strong interest in the structural design of advanced polymer electrolyte, which can give inspirations for future research on novel SPEs and promote the development of next-generation high-safety flexible energy storage devices.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghui Zeng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenfeng Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anqi Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiazhu Guan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honghao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Wang
- State Key Laboratory of Organic Electronics & Information Displays (SKLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Liaoyun Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Gao T, Tian P, Xu Q, Pang H, Ye J, Ning G. Class of Boehmite/Polyacrylonitrile Membranes with Different Thermal Shutdown Temperatures for High-Performance Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2112-2123. [PMID: 36577088 DOI: 10.1021/acsami.2c18058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nowadays, lithium-ion batteries are required to have a higher energy density and safety because of their wide applications. Current commercial separators have poor wettability and thermal stability, which significantly impact the performance and safety of batteries. In this study, a class of boehmite particles with different grain sizes was synthesized by adjusting hydrothermal temperatures and used to fabricate boehmite/polyacrylonitrile (BM/PAN) membranes. All of these BM/PAN membranes can not only maintain excellent thermal dimensional stability above 200 °C but also have good electrolyte wettability and high porosity. More interestingly, the BM/PAN membranes' thermal shutdown temperature can be adjusted by changing the grain size of boehmite particles. The lithium-ion batteries assembled with BM/PAN separators exhibit different thermal stability phenomena at 150 °C and have excellent rate performance and cycle stability at room temperature. After 120 cycles at 1C, the LiFePO4 half-cell assembled by the best BM/PAN separator has almost unchanged discharge capacity, whereas the capacity retention of Celgard 2325 is only about 85%. Meanwhile, the NCM523 half-cell assembled with the best BM/PAN separator shows superb cycle stability after 500 cycles at 8C, with a capacity retention of 79% compared with 56% for Celgard 2325.
Collapse
Affiliation(s)
- Tingting Gao
- Dalian University of Technology-Baohong Technology Lithium Battery New Materials Joint Research Center, School of Chemical Engineering, Dalian University of Technology, Dalian116024, Liaoning, P. R. China
| | - Peng Tian
- Dalian University of Technology-Baohong Technology Lithium Battery New Materials Joint Research Center, School of Chemical Engineering, Dalian University of Technology, Dalian116024, Liaoning, P. R. China
- Innovation Institute, Jiangxi Baohtch Nano Science Co Ltd, Yichun336000, Jiangxi, P. R. China
| | - Qianjin Xu
- Innovation Institute, Jiangxi Baohtch Nano Science Co Ltd, Yichun336000, Jiangxi, P. R. China
| | - Hongchang Pang
- Dalian University of Technology-Baohong Technology Lithium Battery New Materials Joint Research Center, School of Chemical Engineering, Dalian University of Technology, Dalian116024, Liaoning, P. R. China
| | - Junwei Ye
- Dalian University of Technology-Baohong Technology Lithium Battery New Materials Joint Research Center, School of Chemical Engineering, Dalian University of Technology, Dalian116024, Liaoning, P. R. China
| | - Guiling Ning
- Dalian University of Technology-Baohong Technology Lithium Battery New Materials Joint Research Center, School of Chemical Engineering, Dalian University of Technology, Dalian116024, Liaoning, P. R. China
| |
Collapse
|
6
|
Li SZ, Ding L, Yang F, Wu T, Lan F, Cao Y, Xiang M. Facile Preparation of a Trilayer Separator with a Shutdown Function Based on the Compounding of β-Crystal Polypropylene and Hydrogenated Petroleum Resin. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shou-Zhan Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Ding
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Feng Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Tong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Fang Lan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ming Xiang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Sun G, Jiang S, Feng X, Shi X, Zhang X, Li T, Chen N, Hou L, Qi S, Wu D. Ultra-robust polyimide nanofiber separators with shutdown function for advanced lithium-ion batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Ding L, Yan N, Zhang S, Xu R, Wu T, Yang F, Cao Y, Xiang M. Low-Cost Mass Manufacturing Technique for the Shutdown-Functionalized Lithium-Ion Battery Separator Based on Al 2O 3 Coating Online Construction during the β-iPP Cavitation Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6714-6728. [PMID: 35089698 DOI: 10.1021/acsami.1c22080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A shutdown-functionalized lithium-ion battery separator plays a pivotal role in preventing thermal runaway as cells experience electrical abuse, overcharge, and external short circuit. In this article, the trilayer separator endowed with shutdown function was fabricated by ingenious co-extrusion and bidirectional drawing based on the nano-Al2O3 coating online construction during the β-iPP cavitation process. The middle layer composed of nano-Al2O3, polyethylene, and polypropylene offers a shutdown temperature of 130 °C, and skin polypropylene layers with nano-Al2O3 coating hold optimized dimensional stability below the meltdown temperature. Crystal structure measurement and pore structure diagnosis disclose that nano-Al2O3 thins coarse fibrils and makes the porous structure uniform. De-bonding of nano-Al2O3/β-iPP interfaces retains nano-Al2O3 not only on the top surface of the separator but also on the pore intine to realize nano-Al2O3 coating online construction, consequently strengthening tensile capacity, dimensional stability to heating, and electrolyte affinity. Electrochemical tests further disclose that nano-Al2O3 coating stabilizes solid electrolyte interphase germination and heightens lithium-ion migration numbers, confining cell resistances and granting optimal high-rate performance and cycling ability. The proposed approach features simple technics, environment-friendly, continuous fabrication, and coating online construction, which can offer new ideas for the mass fabricating of the high-end separator.
Collapse
Affiliation(s)
- Lei Ding
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Ning Yan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Sihang Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ruizhang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenue, Chengdu 610041, China
| | - Tong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Feng Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ming Xiang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
9
|
Zhang Q, Huang H, Liu T, Wang Y, Yu J, Hu Z. Molecular composite electrolytes of polybenzimidazole/polyethylene oxide with enhanced safety and comprehensive performance for all-solid-state lithium ion batteries. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Ding L, Yan N, Zhang S, Xu R, Wu T, Yang F, Cao Y, Xiang M. Low-Cost and Large-Scale Fabricating Technology for High-Performance Lithium-Ion Battery Composite Separators with Connected Nano-Al2O3 Coating. ACS APPLIED ENERGY MATERIALS 2021. [DOI: 10.1021/acsaem.1c03137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lei Ding
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Ning Yan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Sihang Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ruizhang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenue, Chengdu 610065, China
| | - Tong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Feng Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ming Xiang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
11
|
Li H, Wang H, Xu Z, Wang K, Ge M, Gan L, Zhang Y, Tang Y, Chen S. Thermal-Responsive and Fire-Resistant Materials for High-Safety Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103679. [PMID: 34580989 DOI: 10.1002/smll.202103679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Indexed: 06/13/2023]
Abstract
As one of the most efficient electrochemical energy storage devices, the energy density of lithium-ion batteries (LIBs) has been extensively improved in the past several decades. However, with increased energy density, the safety risk of LIBs becomes higher too. The frequently occurred battery accidents worldwide remind us that safeness is a crucial requirement for LIBs, especially in environments with high safety concerns like airplanes and military platforms. It is generally recognized that the catastrophic thermal runaway (TR) event is the major cause of LIBs related accidents. Tremendous efforts have been devoted to coping with the TR concerns in LIBs, and thus enhance battery safety. This review first gives an introduction to the fundamentals of LIBs and the origins of safety issues. Then, the authors summarize the recent advances to improve the safety of LIBs with a unique focus on thermal-responsive and fire-resistant materials. Finally, a perspective is proposed to guide future research directions in this field. It is anticipated this review will stimulate inspiration and arouse extensive studies on further improvement in battery safety.
Collapse
Affiliation(s)
- Heng Li
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Huibo Wang
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Zhu Xu
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Kexuan Wang
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Mingzheng Ge
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Lin Gan
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| |
Collapse
|
12
|
Li M, Chen Z. Thermo‐responsive polymers for thermal regulation in electrochemical energy devices. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mingqian Li
- Department of NanoEngineering University of California San Diego La Jolla California USA
- Program of Chemical Engineering University of California San Diego La Jolla California USA
| | - Zheng Chen
- Department of NanoEngineering University of California San Diego La Jolla California USA
- Program of Chemical Engineering University of California San Diego La Jolla California USA
- Program of Materials Science and Engineering University of California San Diego La Jolla California USA
- Sustainable Power & Energy Center (SPEC) University of California San Diego La Jolla California USA
| |
Collapse
|
13
|
Su M, Huang G, Wang S, Wang Y, Wang H. High safety separators for rechargeable lithium batteries. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1011-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Hussain A, Luo Y, Li T, Zhang H, Mirza S, Zhang H, Li X. Stop Four Gaps with One Bush: Versatile Hierarchical Polybenzimidazole Nanoporous Membrane for Highly Durable Li-S Battery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55809-55819. [PMID: 33284602 DOI: 10.1021/acsami.0c15549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lithium-sulfur (Li-S) batteries are considered as one of the most prospective candidates for electric vehicles, due to their superior theoretical energy density and low cost. However, the issues of polysulfide ion (PS) shuttling and uncontrollable Li dendrite growth hindered their further application. Herein, a multifunctional nanoporous polybenzimidazole (PBI) membrane with well-controllable morphology was successfully designed and fabricated to address the aforementioned obstacles. In this design, the PBI membrane could offer strong chemical binding interaction with PS, thus applying dynamic adsorption toward PS as well as stable sulfur electrochemistry, which is further verified by experiments and density functional theory (DFT) simulation. Moreover, PBI membranes with high porosity and high electrolyte uptake capability can provide ample lithium storage space and abundant Li+ supplements to facilitate Li deposition and improve Li metal batteries' cyclic stability. Besides that, the PBI membrane has excellent mechanical and thermal stability and exclusive flame resistance, which guarantees the safety of the Li-S battery as well. As a result, Li-S batteries assembled with an as-developed PBI membrane demonstrated a remarkable rate capability of 780 mAh g-1 at 2C and an impressive reversible capacity of 523 mAh g-1 at 0.5C after 400 cycles, which is much higher than the commercial separators. More importantly, even with a lofty sulfur loading of 3 mg cm-2, a high discharge capacity of 744 mAh g-1 (capacity retention 93.96%, at 0.1C after 100 cycles) can also be achieved. Overall, the current study highlighted a robust material platform for stable, safe, and efficient multifunctional separators for high-performance Li-S batteries.
Collapse
Affiliation(s)
- Arshad Hussain
- Division of Energy Storage, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yang Luo
- Division of Energy Storage, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tianyu Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Hongzhang Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Shahid Mirza
- Division of Energy Storage, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huamin Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
15
|
Hussain A, Li D, Luo Y, Zhang H, Zhang H, Li X. Porous membrane with improved dendrite resistance for high-performance lithium metal-based battery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
In situ welding: Superb strength, good wettability and fire resistance tri-layer separator with shutdown function for high-safety lithium ion battery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117509] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Li H, Luo D, He J, Lin F, Wang H, Yu L, Liu W, Li J. Crystalline Al2O3 modified porous poly(aryl ether ketone) (PAEK) composite separators for high performance lithium-ion batteries via an electrospinning technique. CrystEngComm 2020. [DOI: 10.1039/c9ce01557d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermostability and wettability of a separator play key roles in improving the safety and electrochemical properties of lithium-ion batteries (LIBs).
Collapse
Affiliation(s)
- Hai Li
- Hoffmann Institute of Advanced Materials
- Shenzhen Polytechnic
- Shenzhen
- China
| | - Dawei Luo
- Hoffmann Institute of Advanced Materials
- Shenzhen Polytechnic
- Shenzhen
- China
- School of Applied Chemistry and Biological Technology
| | - Jialing He
- Library of Shenzhen Polytechnic
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Feng Lin
- School of Applied Chemistry and Biological Technology
- Shenzhen Polytechnic
- Shenzhen
- China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials
- Shenzhen Polytechnic
- Shenzhen
- China
| | - Liang Yu
- Hoffmann Institute of Advanced Materials
- Shenzhen Polytechnic
- Shenzhen
- China
| | - Wei Liu
- Hoffmann Institute of Advanced Materials
- Shenzhen Polytechnic
- Shenzhen
- China
| | - Jing Li
- Department of Chemistry and Chemical Biology
- Rutgers University
- Piscataway
- USA
- Hoffmann Institute of Advanced Materials
| |
Collapse
|
18
|
A facile non-solvent induced phase separation process for preparation of highly porous polybenzimidazole separator for lithium metal battery application. Sci Rep 2019; 9:19320. [PMID: 31848415 PMCID: PMC6917766 DOI: 10.1038/s41598-019-55865-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/23/2019] [Indexed: 11/22/2022] Open
Abstract
The drawbacks of low porosity, inferior electrolyte wettability, low thermal dimensional stability and permissive lithium dendrite growth of the conventional microporous polyolefin-based separators hinder their widely application in the high power density and safe Lithium ion batteries. Herein, highly porous polybenzimidazole-based separator is prepared by a facile non-solvent induced phase separation process (NIPS) using water, ethanol, chloroform and ethyl acetate as the coagulation bath solvent, respectively. It was found that the ethanol is suitable to fabricate uniform morphology macroporous separator with the porosity of 92%, electrolyte uptake of 594 wt.%, and strong mechanical strength of 15.9 MPa. In addition, the experimental tests (electrochemical analysis and XPS test) and density functional theory calculation suggest that the electron-rich imidazole ring of polybenzimidazle can enhance Li+ mobility electrostatic attraction interaction while the block the PF6− mobility via electrostatic repulsion interaction. Therefore, high Li+ transference number of 0.76 was obtained for the neat polybenzimidazole-based polymer electrolyte. As a proof of concept, the Li/LiFePO4 cell with the polybenzimidazole-based polymer electrolyte/1.0 M LiPF6− ethylene carbonate/dimethyl carbonate (v:v = 1:1) electrolyte exhibits excellent rate capability of >100 mAh g−1 at 6 C (1 C = 170 mA g−1) and superior cycle stability of 1000 cycles.
Collapse
|
19
|
Combining polymeric membranes with inorganic woven fabric: Towards the continuous and affordable fabrication of a multifunctional separator for lithium-ion battery. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117364] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Zhang X, Li N, Hu Z, Yu J, Wang Y, Zhu J. Poly(p-phenylene terephthalamide) modified PE separators for lithium ion batteries. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.071] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Sun G, Kong L, Liu B, Niu H, Zhang M, Tian G, Qi S, Wu D. Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Cross-linked porous polymer separator using vinyl-modified aluminum oxide nanoparticles as cross-linker for lithium-ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Li H, Zhang B, Liu W, Lin B, Ou Q, Wang H, Fang M, Liu D, Neelakandan S, Wang L. Effects of an electrospun fluorinated poly(ether ether ketone) separator on the enhanced safety and electrochemical properties of lithium ion batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Li D, Zhang H, Li X. Porous polyetherimide membranes with tunable morphology for lithium-ion battery. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Li Z, Xiong Y, Sun S, Zhang L, Li S, Liu X, Xu Z, Xu S. Tri-layer nonwoven membrane with shutdown property and high robustness as a high-safety lithium ion battery separator. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.094] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Lohokare HR, Chaudhari HD, Kharul U. Solvent and pH-stable poly(2,5-benzimidazole) (ABPBI) based UF membranes: Preparation and characterizations. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|