1
|
Wang Y, Yang R, Zhang Z, Shan Z, Zhang L. Thermal Insulating and Mechanically Strong Polyimide Aerogel Composites Reinforced by Polyhedral Oligomeric Silsesquioxane-Grafted Carbon Nanotubes. Polymers (Basel) 2025; 17:332. [PMID: 39940534 PMCID: PMC11820784 DOI: 10.3390/polym17030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
In the ship industry, developing thermal insulation materials with exceptional high-temperature resistance, structural stability and light weight is essential. Herein, polyimide (PI) composite aerogels were synthesized. Carbon nanotubes (CNTs) introduced cross-linking structures within the aerogel matrix, effectively reducing shrinkage and forming micrometer-scale pores. Furthermore, the rigid cage-like structure of polyhedral oligomeric silsesquioxane (POSS) generated additional nanoscale pores. This multiscale pore structure enhanced both compressive strength and thermal insulation properties. The PI-CNT-POSS composite aerogel with a 2 wt% CNT content (PI-CP2) demonstrated outstanding overall performance, with compressive strength, modulus and thermal conductivity values of 167.7 KPa, 360.3 Kpa and 40.6 mW/(m·K), respectively, possessing remarkable advantages over the neat PI aerogel. Consequently, this PI composite aerogel can be used as a promising material for heat management in complex environments.
Collapse
Affiliation(s)
- Yating Wang
- Luoyang Ship Material Research Institute, 169 South Binhe Road, Luoyang 471023, China; (Y.W.); (R.Y.)
| | - Ruirui Yang
- Luoyang Ship Material Research Institute, 169 South Binhe Road, Luoyang 471023, China; (Y.W.); (R.Y.)
| | - Zhe Zhang
- Shanghai Collaborative Innovation Center of High Performance Fibers and Composites (Province-Ministry Joint), Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China; (Z.Z.); (Z.S.)
| | - Zicheng Shan
- Shanghai Collaborative Innovation Center of High Performance Fibers and Composites (Province-Ministry Joint), Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China; (Z.Z.); (Z.S.)
| | - Liying Zhang
- Shanghai Collaborative Innovation Center of High Performance Fibers and Composites (Province-Ministry Joint), Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China; (Z.Z.); (Z.S.)
| |
Collapse
|
2
|
Barooah M, Kundu S, Kumar S, Katare A, Borgohain R, Uppaluri RVS, Kundu LM, Mandal B. New generation mixed matrix membrane for CO 2 separation: Transition from binary to quaternary mixed matrix membrane. CHEMOSPHERE 2024; 354:141653. [PMID: 38485000 DOI: 10.1016/j.chemosphere.2024.141653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Contemporary advances in material development associated with membrane gas separation refer to the cost-effective fabrication of high-performance, defect-free mixed matrix membranes (MMMs). For clean energy production, natural gas purification, and CO2 capture from flue gas systems, constituting a functional integration of polymer matrix and inorganic filler materials find huge applications. The broad domain of research and development of MMMs focused on the selection of appropriate materials, inexpensive membrane fabrication, and comparative study with other gas separation membranes for real-world applications. This study addressed a comprehensive review of the advanced MMMs wrapping various facets of membrane material selection; polymer and filler particle morphology and compatibility between the phases and the relevance of several fillers in the assembly of MMMs are analyzed. Further, the research on binary MMMs, their problems, and solutions to overcome these challenges have also been discussed. Finally, the future directions and scope of work on quaternary MMM are scrutinized in the article.
Collapse
Affiliation(s)
- Mridusmita Barooah
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Sukanya Kundu
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Shubham Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Aviti Katare
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Rajashree Borgohain
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Ramagopal V S Uppaluri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Lal Mohan Kundu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Bishnupada Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Self-assembled proton conduction networks consisting of SPEEK, NH2-POSS, and IL with enhanced proton conduction and decreased IL loss. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Swapna VP, Krishnan M, Abhisha VS, Stephen R. Efficient cage structured polyhedral oligomeric silsesquioxane embedded poly(vinyl alcohol) membranes: Thermal degradation and mechanical stability in hydrated condition. J Appl Polym Sci 2021. [DOI: 10.1002/app.51377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Meera Krishnan
- Department of Chemistry St. Joseph's College (Autonomous) Calicut Kerala India
| | | | - Ranimol Stephen
- Department of Chemistry St. Joseph's College (Autonomous) Calicut Kerala India
| |
Collapse
|
5
|
Zhao Y, Zhang Y, Li F, Bai Y, Pan Y, Ma J, Zhang S, Shao L. Ultra-robust superwetting hierarchical membranes constructed by coordination complex networks for oily water treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119234] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Goh PS, Wong KC, Ismail AF. Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions. MEMBRANES 2020; 10:E297. [PMID: 33096685 PMCID: PMC7589584 DOI: 10.3390/membranes10100297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
One of the critical aspects in the design of nanocomposite membrane is the selection of a well-matched pair of nanomaterials and a polymer matrix that suits their intended application. By making use of the fascinating flexibility of nanoscale materials, the functionalities of the resultant nanocomposite membranes can be tailored. The unique features demonstrated by nanomaterials are closely related to their dimensions, hence a greater attention is deserved for this critical aspect. Recognizing the impressive research efforts devoted to fine-tuning the nanocomposite membranes for a broad range of applications including gas and liquid separation, this review intends to discuss the selection criteria of nanostructured materials from the perspective of their dimensions for the production of high-performing nanocomposite membranes. Based on their dimension classifications, an overview of the characteristics of nanomaterials used for the development of nanocomposite membranes is presented. The advantages and roles of these nanomaterials in advancing the performance of the resultant nanocomposite membranes for gas and liquid separation are reviewed. By highlighting the importance of dimensions of nanomaterials that account for their intriguing structural and physical properties, the potential of these nanomaterials in the development of nanocomposite membranes can be fully harnessed.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (K.C.W.); (A.F.I.)
| | | | | |
Collapse
|
7
|
Ma X, He L, Huang S, Wu Y, Pan A, Liang J. Effect of different molecular architectured POSS-fluoropolymers on their self-assembled hydrophobic coatings. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04739-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Japip S, Lee GR, Chung TS. The Role of Fluorinated Aryl Ether Moiety in Polyimide- co-etherimide on Gas Transport Properties. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Susilo Japip
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Guang Rong Lee
- Engineering Science Programme, National University of Singapore, 117575, Singapore
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| |
Collapse
|
9
|
Lin Y, Wang L, Zhou J, Ye L, Hu H, Luo Z, Zhou L. Surface modification of PVA hydrogel membranes with carboxybetaine methacrylate via PET-RAFT for anti-fouling. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.12.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Altaf F, Gill R, Batool R, Drexler M, Alamgir F, Abbas G, Jacob K. Proton conductivity and methanol permeability study of polymer electrolyte membranes with range of functionalized clay content for fuel cell application. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Wu Y, Zhou T, Wu H, Fu W, Wang X, Wang S, Yang L, Wu X, Ren Y, Jiang Z, Wang B. Constructing robust and highly-selective hydrogel membranes by bioadhesion-inspired method for CO2 separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Julian H, Sutrisna PD, Hakim AN, Harsono HO, Hugo YA, Wenten IG. Nano-silica/polysulfone asymmetric mixed-matrix membranes (MMMs) with high CO2 permeance in the application of CO2/N2 separation. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1520253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Helen Julian
- Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, Indonesia
| | - Putu Doddy Sutrisna
- Department of Chemical Engineering, Universitas Surabaya, Kalirungkut-Surabaya, Indonesia
| | - Ahmad Nurul Hakim
- Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, Indonesia
| | | | | | - I G. Wenten
- Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
13
|
CO₂ Separation in Nanocomposite Membranes by the Addition of Amidine and Lactamide Functionalized POSS ® Nanoparticles into a PVA Layer. MEMBRANES 2018; 8:membranes8020028. [PMID: 29890680 PMCID: PMC6026939 DOI: 10.3390/membranes8020028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 11/17/2022]
Abstract
In this article, we studied two different types of polyhedral oligomeric silsesquioxanes (POSS®) functionalized nanoparticles as additives for nanocomposite membranes for CO₂ separation. One with amidine functionalization (Amidino POSS®) and the second with amine and lactamide groups functionalization (Lactamide POSS®). Composite membranes were produced by casting a polyvinyl alcohol (PVA) layer, containing either amidine or lactamide functionalized POSS® nanoparticles, on a polysulfone (PSf) porous support. FTIR characterization shows a good compatibility between the nanoparticles and the polymer. Differential scanning calorimetry (DSC) and the dynamic mechanical analysis (DMA) show an increment of the crystalline regions. Both the degree of crystallinity (Xc) and the alpha star transition, associated with the slippage between crystallites, increase with the content of nanoparticles in the PVA selective layer. These crystalline regions were affected by the conformation of the polymer chains, decreasing the gas separation performance. Moreover, lactamide POSS® shows a higher interaction with PVA, inducing lower values in the CO₂ flux. We have concluded that the interaction of the POSS® nanoparticles increased the crystallinity of the composite membranes, thereby playing an important role in the gas separation performance. Moreover, these nanocomposite membranes did not show separation according to a facilitated transport mechanism as expected, based on their functionalized amino-groups, thus, solution-diffusion was the main mechanism responsible for the transport phenomena.
Collapse
|
14
|
Janakiram S, Ahmadi M, Dai Z, Ansaloni L, Deng L. Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO₂ Separation: A Review. MEMBRANES 2018; 8:E24. [PMID: 29757953 PMCID: PMC6027202 DOI: 10.3390/membranes8020024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022]
Abstract
Membrane technology has the potential to be an eco-friendly and energy-saving solution for the separation of CO₂ from different gaseous streams due to the lower cost and the superior manufacturing features. However, the performances of membranes made of conventional polymers are limited by the trade-off between the permeability and selectivity. Improving the membrane performance through the addition of nanofillers within the polymer matrix offers a promising strategy to achieve superior separation performance. This review aims at providing a complete overview of the recent advances in nanocomposite membranes for enhanced CO₂ separation. Nanofillers of various dimensions and properties are categorized and effects of nature and morphology of the 0D to 2D nanofillers in the corresponding nanocomposite membranes of different polymeric matrixes are discussed with regard to the CO₂ permeation properties. Moreover, a comprehensive summary of the performance data of various nanocomposite membranes is presented. Finally, the advantages and challenges of various nanocomposite membranes are discussed and the future research and development opportunities are proposed.
Collapse
Affiliation(s)
- Saravanan Janakiram
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Mahdi Ahmadi
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Zhongde Dai
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Luca Ansaloni
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| |
Collapse
|
15
|
Wang J, Zaidi SSA, Hasnain A, Guo J, Ren X, Xia S, Zhang W, Feng Y. Multitargeting Peptide-Functionalized Star-Shaped Copolymers with Comblike Structure and a POSS-Core To Effectively Transfect Endothelial Cells. ACS Biomater Sci Eng 2018; 4:2155-2168. [DOI: 10.1021/acsbiomaterials.8b00235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Syed Saqib Ali Zaidi
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Ali Hasnain
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People’s Armed Police Force, 220 Chenglin Road, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People’s Armed Police Force, 220 Chenglin Road, Tianjin 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
16
|
|