1
|
Dehghanpour SB, Parvizian F, Vatanpour V, He T. Enhancing the flux and salt rejection of thin-film composite nanofiltration membranes prepared on plasma-treated polyethylene using PVA/TS-1 composite. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Zhai W, Yu H, Chen H, Li L, Li D, Zhang Y, He T. Stable fouling resistance of polyethylene (PE) separator membrane via oxygen plasma plus zwitterion grafting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Du C, Hu J, Chen F. Thin‐film nanocomposite forward osmosis membrane with polydopamine @
UiO‐66‐NH
2
‐modified polypropylene support and its antifouling property. J Appl Polym Sci 2022. [DOI: 10.1002/app.52724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunhui Du
- School of Environmental Science and Engineering Zhejiang Gongshang University Hangzhou China
| | - Jintai Hu
- School of Environmental Science and Engineering Zhejiang Gongshang University Hangzhou China
| | - Fen Chen
- School of Environmental Science and Engineering Zhejiang Gongshang University Hangzhou China
| |
Collapse
|
4
|
Sun N, Dou P, Zhai W, He H, Nghiem LD, Vatanpour V, Zhang Y, Liu C, He T. Polyethylene separator supported thin-film composite forward osmosis membranes for concentrating lithium enriched brine. WATER RESEARCH 2022; 216:118297. [PMID: 35325825 DOI: 10.1016/j.watres.2022.118297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
To extract lithium from salt lake brine involves a process of separation and concentration. After separating lithium from brine, the lithium ion concentration is generally a few hundred mg/L which is far below the required 20-30 g/L (as Li+) before precipitation as lithium carbonate. The concentration step of a lithium enriched brine is crucial but highly energy-intensive. Spontaneous forward osmosis (FO) technology offers the possibility for concentrating lithium ions with low energy. Because the concentrating process involves both feed and draw solution with very high salinity, it is highly desirable to have a high performance FO membrane with a low structural parameter as well as a high rejection to ions. In this work, thin polyethylene separator supported FO (PE-FO) membranes were prepared and post-treated stepwise with benzyl alcohol (BA) and hydraulic compaction. The effect of the post-treatment on the FO performance was systematically analyzed. Excellent FO performance was achieved: the water flux and reverse salt flux selectivity were 66.3 LMH and 5.25 L/g, respectively, when the active layer is oriented towards the 0.5 M NaCl draw solution with deionized water as the feed. To the best of our knowledge, this FO flux is the highest ever reported in the open literature under similar test conditions. Applied in concentrating lithium enriched brine, the membrane showed superior water flux using saturated MgCl2 as draw solution. A new FO model was established to simulate the water flux during the concentration process with good agreement with the experimental results. The promising results using PE-FO membrane for lithium enrichment opens a new frontier for the potential application of FO membranes.
Collapse
Affiliation(s)
- Nan Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengjia Dou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Wentao Zhai
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hailong He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Yuebiao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tao He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
5
|
Modified recycled polyamide 6,6 (r-PA 6,6) based on pelagic fishing nets and their physical properties. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Heidari AA, Mahdavi H. TFC organic solvent nanofiltration membrane fabricated by a novel HDPE membrane support covered by manganese dioxide /tannic acid-Fe3+layers. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
TFC solvent-resistant nanofiltration membrane prepared via a gyroid-like PE support coated with polydopamine/Tannic acid-Fe(III). J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Xiao F, Ge H, Wang Y, Bian S, Tong Y, Gao C, Zhu G. Novel thin-film composite membrane with polydopamine-modified polyethylene support and tannic acid-Fe3+ interlayer for forward osmosis applications. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Kim MK, Chang JW, Park K, Yang DR. Comprehensive assessment of the effects of operating conditions on membrane intrinsic parameters of forward osmosis (FO) based on principal component analysis (PCA). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Ibrar I, Yadav S, Ganbat N, Samal AK, Altaee A, Zhou JL, Nguyen TV. Feasibility of H 2O 2 cleaning for forward osmosis membrane treating landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113024. [PMID: 34139645 DOI: 10.1016/j.jenvman.2021.113024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
This study reports landfill leachate treatment by the forward osmosis (FO) process using hydrogen peroxide (H2O2) for membrane cleaning. Although chemical cleaning is an effective method for fouling control, it could compromise membrane integrity. Thus, understanding the impact of chemical cleaning on the forward osmosis membrane is essential to improving the membrane performance and lifespan. Preliminary results revealed a flux recovery of 98% in the AL-FS mode (active layer facing feed solution) and 90% in the AL-DS (draw solution faces active layer) using 30% H2O2 solution diluted to 3% by pure water. The experimental work investigated the effects of chemical cleaning on the polyamide active and polysulfone support layers since the FO membrane could operate in both orientations. Results revealed that polysulfone support layer was more sensitive to H2O2 damage than the polyamide active at a neutral pH. The extended exposure of thin-film composite (TFC) FO membrane to H2O2 was investigated, and the active layer tolerated H2O2 for 72 h, and the support layer for only 40 h. Extended operation of the TFC FO membrane in the AL-FS based on a combination of physical (hydraulic flushing with DI water) and H2O2 was reported, and chemical cleaning with H2O2 could still recover 92% of the flux.
Collapse
Affiliation(s)
- Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Sudesh Yadav
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Namuun Ganbat
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Akshaya K Samal
- Centre for Nano and Material Science (CNMS), Jain University, India
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia.
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Tien Vinh Nguyen
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| |
Collapse
|
11
|
Bai G, Xia J, Cao B, Zhang R, Meng J, Li P. Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2078-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Kim DY, Park H, Park YI, Lee JH. Polyvinyl alcohol hydrogel-supported forward osmosis membranes with high performance and excellent pH stability. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Hu Y, Li Q, Guo Y, Zhu L, Zeng Z, Xiong Z. Nanofiltration‐like forward osmosis membranes on in‐situ mussel‐modified polyvinylidene fluoride porous substrate for efficient salt/dye separation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yi‐Ning Hu
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Qiao‐Mei Li
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Yan‐Feng Guo
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Li‐Jing Zhu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Zhi‐Xiang Zeng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Zhu Xiong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering Guangzhou University Guangzhou Guangdong China
| |
Collapse
|
14
|
Kwon SJ, Park K, Kim DY, Zhan M, Hong S, Lee JH. High-performance and durable pressure retarded osmosis membranes fabricated using hydrophilized polyethylene separators. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118796] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Liu T, Chen D, Cao Y, Yang F, Chen J, Kang J, Xu R, Xiang M. Construction of a composite microporous polyethylene membrane with enhanced fouling resistance for water treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Idarraga-Mora JA, O'Neal AD, Pfeiler ME, Ladner DA, Husson SM. Effect of mechanical strain on the transport properties of thin-film composite membranes used in osmotic processes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Park SJ, Lee JH. Fabrication of high-performance reverse osmosis membranes via dual-layer slot coating with tailoring interfacial adhesion. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Wang M, Xu Z, Guo Y, Hou Y, Li P, Niu QJ. Engineering a superwettable polyolefin membrane for highly efficient oil/water separation with excellent self-cleaning and photo-catalysis degradation property. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118409] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Ma J, Xiao T, Long N, Yang X. The role of polyvinyl butyral additive in forming desirable pore structure for thin film composite forward osmosis membrane. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Li Y, Pan G, Wang J, Zhang Y, Shi H, Yu H, Liu Y. Tailoring the Polyamide Active Layer of Thin-Film Composite Forward Osmosis Membranes with Combined Cosolvents during Interfacial Polymerization. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Li
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Guoyuan Pan
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Jing Wang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Yang Zhang
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Hongwei Shi
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Hao Yu
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Yiqun Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| |
Collapse
|
21
|
Park K, Kim DY, Jang YH, Kim MG, Yang DR, Hong S. Comprehensive analysis of a hybrid FO/crystallization/RO process for improving its economic feasibility to seawater desalination. WATER RESEARCH 2020; 171:115426. [PMID: 31887548 DOI: 10.1016/j.watres.2019.115426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/28/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
In this study, the FO/crystallization/RO hybrid process was analyzed comprehensively, including experimentation, modeling, and energy and cost estimation, to examine and improve its feasibility to seawater desalination. A new operating strategy by heating the FO process to 45 °C was suggested, and a detailed process design was conducted. A comparative analysis with the conventional seawater reverse osmosis (SWRO) process was performed in terms of specific energy consumption (SEC) and specific water cost (SWC). The hybrid process can produce fresh water with SWC of 0.6964 $/m3, electrical SEC of 2.71 kWh/m3, and thermal SEC of 14.684 kWh/m3. Compared to the conventional SWRO process (SWC of 0.6890 $/m3 and electrical SEC of 2.674 kWh/m3), the hybrid process can produce water with comparable cost and energy consumption. An economic feasibility study that utilized the waste heat and the developed FO technology was also carried out to investigate future developments of the hybrid process. The SWC can be reduced to 0.6435 $/m3 with free waste heat energy. The permeate water quality of the hybrid process was about half that of the conventional SWRO process on molar basis. The results revealed that the FO/crystallization/RO hybrid process can be utilized as a competitive process for seawater desalination with high recovery and high water quality.
Collapse
Affiliation(s)
- Kiho Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
| | - Do Yeon Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Yoon Hyuk Jang
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Min-Gyu Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Dae Ryook Yang
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.
| | - Seungkwan Hong
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Structural tailoring of sharkskin-mimetic patterned reverse osmosis membranes for optimizing biofouling resistance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117602] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Shin MG, Kwon SJ, Park H, Park YI, Lee JH. High-performance and acid-resistant nanofiltration membranes prepared by solvent activation on polyamide reverse osmosis membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117590] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Zhou J, He HL, Sun F, Su Y, Yu HY, Gu JS. Structural parameters reduction in polyamide forward osmosis membranes via click modification of the polysulfone support. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Xu X, Zhang H, Yu M, Wang Y, Gao T, Yang F. Conductive thin film nanocomposite forward osmosis membrane (TFN-FO) blended with carbon nanoparticles for membrane fouling control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134050. [PMID: 32380598 DOI: 10.1016/j.scitotenv.2019.134050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/23/2019] [Accepted: 08/21/2019] [Indexed: 05/28/2023]
Abstract
Membrane fouling in forward osmosis (FO) significantly affects water flux and membrane life, which restricts the further development of FO. In this work, carbon nanoparticles were blended in polyethersulfone (PES) to prepare a conductive thin film nanocomposite (TFN) FO membrane to control the membrane fouling in FO processes. The membrane containing 4 wt% carbon exhibited an optimum performance with water flux of 14.0 and 17.2 LMH for FO (active layer for FS) and PRO (active layer for DS) modes, respectively, using DI water as feed solution and 1 M NaCl as draw solution and electrical conductivity of 170.1 mS/m. Dynamic antifouling experiments showed that, compared with no voltage applied, the water flux decline of surface charged TFN-FO membrane was significantly retarded. For CaSO4, BSA and LYS as model contaminants, the water fluxes were improved by 31%, 13% and 7% under the voltages of +1.7 V, -1.7 V and +1.7 V, respectively. Moreover, the charged membrane is more effective in relieving the initial membrane fouling, and contaminant-contaminant interactions mechanism dominates the formation of further membrane fouling processes. Therefore, for contaminants with different charge conditions, customizing membrane surface charges is a feasible and promising approach for controlling membrane fouling in situ method.
Collapse
Affiliation(s)
- Xiaotong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China.
| | - Mingchuan Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Yuezhu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Tianyu Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| |
Collapse
|
26
|
Heidari AA, Mahdavi H. Recent Development of Polyolefin-Based Microporous Separators for Li-Ion Batteries: A Review. CHEM REC 2019; 20:570-595. [PMID: 31833648 DOI: 10.1002/tcr.201900054] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/29/2023]
Abstract
Secondary Li-ion batteries have been paid attention to wide-range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium-ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium-ion (Li-ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li-ion batteries over the decades because of their superior properties such as cost-efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li-ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono- and multilayer polyolefin separators if they are modified using suitable methods and materials.
Collapse
Affiliation(s)
- Ali Akbar Heidari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Hossein Mahdavi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
27
|
Kwon SJ, Park SH, Shin MG, Park MS, Park K, Hong S, Park H, Park YI, Lee JH. Fabrication of high performance and durable forward osmosis membranes using mussel-inspired polydopamine-modified polyethylene supports. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Kimani MK, Loo R, Goluch ED. Biosample Concentration Using Microscale Forward Osmosis with Electrochemical Monitoring. Anal Chem 2019; 91:7487-7494. [DOI: 10.1021/acs.analchem.9b02163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Martin K. Kimani
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rachel Loo
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Edgar D. Goluch
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Biology, Civil & Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
29
|
Facile performance enhancement of reverse osmosis membranes via solvent activation with benzyl alcohol. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Kwon HE, Kwon SJ, Park SJ, Shin MG, Park SH, Park MS, Park H, Lee JH. High performance polyacrylonitrile-supported forward osmosis membranes prepared via aromatic solvent-based interfacial polymerization. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Wan C, Chen X, Lv F, Chen X, Meng L, Li L. Biaxial stretch-induced structural evolution of polyethylene gel films: Crystal melting recrystallization and tilting. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Thermally stable and green cellulose-based composites strengthened by styrene-co-acrylate latex for lithium-ion battery separators. Carbohydr Polym 2019; 206:801-810. [DOI: 10.1016/j.carbpol.2018.11.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022]
|
33
|
Park SH, Kim YJ, Kwon SJ, Shin MG, Nam SE, Cho YH, Park YI, Kim JF, Lee JH. Polyethylene Battery Separator as a Porous Support for Thin Film Composite Organic Solvent Nanofiltration Membranes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44050-44058. [PMID: 30462483 DOI: 10.1021/acsami.8b16403] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Organic solvent nanofiltration (OSN) has made significant advances recently, and it is now possible to fabricate thin film composite (TFC) membranes with a selective layer thickness below 10 nm that gives ultrafast solvent permeance. However, such high permeance is inadvertently limited by the support membrane beneath the selective layer, and thus there is an urgent need to develop a suitable support to maximize TFC performance. In this work, we employed a commercially available polyethylene (PE) battery separator as a porous support to fabricate high performance TFC OSN membranes. To deposit a uniform polyamide selective layer onto the porous support via interfacial polymerization, the PE support was hydrophilized with O2 plasma and the reaction efficiency was optimized using a surfactant. Owing to the high surface porosity of the PE support and the high permselectivity of the PA layer, the PE-supported TFC membrane outperformed the previously reported OSN membranes and its performance exceeded the current performance upper bound. A solvent activation step dramatically improved the solvent permeance by 5-fold while maintaining nanoseparation properties. In addition to the superior OSN performance, the commercial availability of the PE support and simplified TFC fabrication protocol would make the PE-supported OSN membranes commercially attractive.
Collapse
Affiliation(s)
- Sang Hee Park
- Department of Chemical and Biomolecular Engineering , Korea University , Seoul , 02841 , Republic of Korea
| | - Yeo Jin Kim
- Membrane Research Center, Advanced Materials Division , Korea Institute of Chemical Technology (KRICT) , Daejeon , 34114 , Republic of Korea
- Department of Energy Engineering , Hanyang University , Seoul , 04763 , Republic of Korea
| | - Soon Jin Kwon
- Department of Chemical and Biomolecular Engineering , Korea University , Seoul , 02841 , Republic of Korea
| | - Min Gyu Shin
- Department of Chemical and Biomolecular Engineering , Korea University , Seoul , 02841 , Republic of Korea
| | - Seung Eun Nam
- Membrane Research Center, Advanced Materials Division , Korea Institute of Chemical Technology (KRICT) , Daejeon , 34114 , Republic of Korea
| | - Young Hoon Cho
- Membrane Research Center, Advanced Materials Division , Korea Institute of Chemical Technology (KRICT) , Daejeon , 34114 , Republic of Korea
| | - You In Park
- Membrane Research Center, Advanced Materials Division , Korea Institute of Chemical Technology (KRICT) , Daejeon , 34114 , Republic of Korea
| | - Jeong F Kim
- Membrane Research Center, Advanced Materials Division , Korea Institute of Chemical Technology (KRICT) , Daejeon , 34114 , Republic of Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biomolecular Engineering , Korea University , Seoul , 02841 , Republic of Korea
| |
Collapse
|
34
|
Park SJ, Kwon SJ, Kwon HE, Shin MG, Park SH, Park H, Park YI, Nam SE, Lee JH. Aromatic solvent-assisted interfacial polymerization to prepare high performance thin film composite reverse osmosis membranes based on hydrophilic supports. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|