1
|
Khalid A, Zulfiqar S, Tabassum N, Ullah Z, Zaki ZI, Fallatah AM, El-Bahy ZM, Laraib S, Ahmad F. Hydroxyapatite and ionic liquid coupled with hybrid membranes for toxic pollutant removal and remediation. CHEMOSPHERE 2023; 339:139717. [PMID: 37541442 DOI: 10.1016/j.chemosphere.2023.139717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Access to clean water is the mandatory requirement for every living being to sustain life. So, membrane-based integrated approach of adsorption and separation technology has recently been preferred by scientists over other conventional techniques, for wastewater treatment. Current research focused on the synthesis of novel imidazolium (A1) based IL, which was further functionalized with hydroxyapatite (HAp; extracted from Labeo rohita scales), to create possible solutions towards environmental remediation. Cellulose acetate (CA) was used for the fabrication of three different ionic liquid membranes. All the synthesized products were characterized by FTIR, XRD and TGA. Two dyes of different nature, i.e., congo red (anionic) and crystal violet (cationic) were selected because of their highly toxic and carcinogenic effects, for batch adsorption experiments. Antibacterial activity of the synthesized membranes was also evaluated against S. aureus. Results of the study revealed that CA-HA1 1:2 acted as the best adsorbent towards the removal of crystal violet, exhibiting removal efficiency of 98% with the contact time of 24 h while in case of congo red adsorption, CA-HA1 (1:2) proved as prime adsorbent with the removal efficiency of 96% for the same preceding contact time. Considering the antibacterial character of the synthesized membranes, CA-A1 (1:1) emerged as very efficient antibacterial agent with the inhibition zone of 50 mm after 48 h. The overall behavior of monolayer and multilayer adsorption was witnessed for both dyes while kinetic studies favored the pseudo-second order reaction for all adsorbents.
Collapse
Affiliation(s)
- Amina Khalid
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan.
| | - Sana Zulfiqar
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan.
| | - Noshabah Tabassum
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | - Zahoor Ullah
- Department of Chemistry, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Takatu Campus, Quetta, 87100, Pakistan
| | - Zaki I Zaki
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed M Fallatah
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Sofia Laraib
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | - Faizan Ahmad
- Faculty of Health, Education, and Life Sciences, School of Health Sciences, Birmingham City University, City South Campus, Westbourne Road, Birmingham, United Kingdom
| |
Collapse
|
2
|
Zhang Z, Zhao R, Wang S, Meng J. Recent advances in bio-inspired ionic liquid-based interfacial materials from preparation to application. Front Bioeng Biotechnol 2023; 11:1117944. [PMID: 36741752 PMCID: PMC9892770 DOI: 10.3389/fbioe.2023.1117944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Natural creatures always display unique and charming functions, such as the adhesion of mussels and the lubrication of Nepenthes, to maintain their life activities. Bio-inspired interfacial materials infused with liquid, especially for ionic liquids (ILs), have been designed and prepared to meet the emerging and rising needs of human beings. In this review, we first summarize the recent development of bio-inspired IL-based interfacial materials (BILIMs), ranging from the synthesis strategy to the design principle. Then, we discuss the advanced applications of BILIMs from anti-adhesive aspects (e.g., anti-biofouling, anti-liquid fouling, and anti-solid fouling) to adhesive aspects (e.g., biological sensor, adhesive tape, and wound dressing). Finally, the current limitations and future prospects of BILIMs are provided to feed the actual needs.
Collapse
Affiliation(s)
- Zhe Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Zhao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Qingdao Casfuture Research Institute Co., Ltd., Qingdao, China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Qingdao Casfuture Research Institute Co., Ltd., Qingdao, China
- Binzhou Institute of Technology, Binzhou, China
| |
Collapse
|
3
|
Polotskaya GA, Kuryndin IS, Saprykina NN, Bronnikov SV. Structure and Transport Properties of Cellulose Acetate/Montmorillonite Composites. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622060063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Belhocine M, Bourzami R, Dergal F, Ouksel L, Ammari A, Benladghem Z, Haouzi A, Bouktab S. Physical, chemical and antibacterial properties of 1-methyl-3-(4-vinylbenzyl) imidazol-3-ium chloride ionic liquid: Experimental and ab-initio analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
El Nemr A, Eleryan A, Mashaly M, Khaled A. Rapid synthesis of cellulose propionate and its conversion to cellulose nitrate propionate. Polym Bull (Berl) 2021; 78:4149-4182. [DOI: 10.1007/s00289-020-03317-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/09/2020] [Accepted: 07/26/2020] [Indexed: 02/05/2023]
|
6
|
|
7
|
Fluorinated MOF-808 with various modulators to fabricate high-performance hybrid membranes with enhanced hydrophobicity for organic-organic pervaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Amarante RC, Donaldson AA. Pervaporation separation of ethanol and 2-ethylhexanol mixtures using cellulose acetate propionate and poly(1-vinylpyrrolidone-co-vinyl acetate) blend membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Prihatiningtyas I, Hartanto Y, Ballesteros MSR, Van der Bruggen B. Cellulose triacetate/
LUDOX‐SiO
2
nanocomposite for synthesis of pervaporation desalination membranes. J Appl Polym Sci 2020. [DOI: 10.1002/app.50000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Indah Prihatiningtyas
- Department of Chemical Engineering KU Leuven Leuven Belgium
- Department of Chemical Engineering Mulawarman University Samarinda Indonesia
| | - Yusak Hartanto
- Materials and Process Engineering (iMMC‐IMAP) UC Louvain Louvain‐la‐Neuve Belgium
| | | | - Bart Van der Bruggen
- Department of Chemical Engineering KU Leuven Leuven Belgium
- Faculty of Engineering and the Built Environment Tshwane University of Technology Pretoria South Africa
| |
Collapse
|
10
|
The Impact of Reactive Ionic Liquids Addition on the Physicochemical and Sorption Properties of Poly(Vinyl Alcohol)-Based Films. Polymers (Basel) 2020; 12:polym12091958. [PMID: 32872455 PMCID: PMC7565177 DOI: 10.3390/polym12091958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/02/2022] Open
Abstract
A new type of hybrid polymeric-based film containing 1-(1,3-diethoxy-1,3-dioxopropan-2-ylo)-3-methylimidazolium bromide (RIL1_Br) and 1-(2-etoxy-2-oxoethyl)-3-methylimidazolium bromide (RIL2_Br) reactive ionic liquids was elaborated. Poly(vinyl alcohol) (PVA)-based films with 9–33 wt % of RILs were subsequently characterized using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and TGA-FTIR. PVA-RIL films were also studied in tensile tests, contact angle and sorption measurements. RIL incorporation enhanced thermal and mechanical stability of PVA membranes due to the hydrogen bonds between RILs and polymer chains. Membrane swelling behavior in water (H2O), ethanol (EtOH), and propan-2-ol (IPA) and the kinetics of water sorption process revealed that PVA-RILs membranes possess the highest affinity towards water. It was pointed out that both the RIL type and the RIL amount in the polymer matrix have significant influence on the membrane swelling behavior and the water sorption kinetics.
Collapse
|
11
|
Novel Mixed Matrix Sodium Alginate-Fullerenol Membranes: Development, Characterization, and Study in Pervaporation Dehydration of Isopropanol. Polymers (Basel) 2020; 12:polym12040864. [PMID: 32283648 PMCID: PMC7240529 DOI: 10.3390/polym12040864] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 11/24/2022] Open
Abstract
Novel mixed matrix dense and supported membranes based on biopolymer sodium alginate (SA) modified by fullerenol were developed. Two kinds of SA–fullerenol membranes were investigated: untreated and cross-linked by immersing the dry membranes in 1.25 wt % calcium chloride (CaCl2) in water for 10 min. The structural and physicochemical characteristics features of the SA–fullerenol composite were investigated by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopic methods, scanning electron (SEM) and atomic force (AFM) microscopies, thermogravimetric analysis (TGA), and swelling experiments. Transport properties were evaluated in pervaporation dehydration of isopropanol in a wide concentration range. It was found that the developed supported cross-linked SA-5/PANCaCl2 membrane (modified by 5 wt % fullerenol) possessed the best transport properties (the highest permeation fluxes 0.64–2.9 kg/(m2 h) and separation factors 26–73,326) for the pervaporation separation of the water–isopropanol mixture in the wide concentration range (12–90 wt % water) at 22 °C and is suitable for the promising application in industry.
Collapse
|
12
|
Preparation of poly (vinyl alcohol)/palygorskite-poly (ionic liquids) hybrid catalytic membranes to facilitate esterification. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115746] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Yan X, Anguille S, Bendahan M, Moulin P. Ionic liquids combined with membrane separation processes: A review. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.103] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Kujawa J, Rynkowska E, Fatyeyeva K, Knozowska K, Wolan A, Dzieszkowski K, Li G, Kujawski W. Preparation and Characterization of Cellulose Acetate Propionate Films Functionalized with Reactive Ionic Liquids. Polymers (Basel) 2019; 11:E1217. [PMID: 31330836 PMCID: PMC6680812 DOI: 10.3390/polym11071217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022] Open
Abstract
1-(1,3-diethoxy-1,3-dioxopropan-2-ylo)-3-methylimidazolium bromide (RIL1_Br), 1-(2-etoxy-2-oxoethyl)-3-methylimidazolium bromide (RIL2_Br), 1-(2-etoxy-2-oxoethyl)-3-methylimidazolium tetrafluoroborate (RIL3_BF4) ionic liquids were synthesized. Subsequently, the dense cellulose acetate propionate (CAP)-based materials containing from 9 to 28.6 wt % of these reactive ionic liquids were elaborated. Reactive ionic liquids (RILs) were immobilized in CAP as a result of the transesterification reaction. The yield of this reaction was over 90% with respect to the used RIL. The physicochemical properties of resultant films were studied using nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The RIL incorporation influenced the morphology of films by increasing their surface roughness with the rise of RIL content. The thermal stability of CAP-based membranes was dependent on the nature of the ionic liquid. Nevertheless, it was proven that CAP films containing RILs were stable up to 120-150 °C. Transport properties were characterized by water permeation tests. It was found that the type and the amount of the ionic liquid in the CAP matrix substantially influenced the transport properties of the prepared hybrid materials.
Collapse
Affiliation(s)
- Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Torun, Poland
| | - Edyta Rynkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Torun, Poland
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Kateryna Fatyeyeva
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Katarzyna Knozowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Torun, Poland
| | - Andrzej Wolan
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Torun, Poland
| | - Krzysztof Dzieszkowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Torun, Poland
| | - Guoqiang Li
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Torun, Poland
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Torun, Poland.
| |
Collapse
|
15
|
Novel Composite Membranes Based on Chitosan Copolymers with Polyacrylonitrile and Polystyrene: Physicochemical Properties and Application for Pervaporation Dehydration of Tetrahydrofuran. MEMBRANES 2019; 9:membranes9030038. [PMID: 30866529 PMCID: PMC6468362 DOI: 10.3390/membranes9030038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 11/16/2022]
Abstract
Pervaporation has been applied for tetrahydrofuran (THF) dehydration with novel composite membranes advanced by a thin selective layer composed of chitosan (CS) modified by copolymerization with vinyl monomers, acrylonitrile (AN) and styrene, in order to improve the chemical and mechanical stability of CS-based membranes. Composite membranes were developed by depositing a thin selective layer composed of CS copolymers onto a commercially-available porous support based on aromatic polysulfonamide (UPM-20®). The topography and morphology of the obtained materials were studied by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Thermal properties and stability were determined by coupled evolved gas analysis (EGA-MS). Transport properties were estimated in pervaporation dehydration of THF. The effect of operating parameters for the pervaporation dehydration of THF such as feed compositions and temperatures (295, 308 and 323 K) was evaluated. It was shown that CS modification with different vinyl monomers led to a difference in physical and transport properties. The composite membrane with the thin selective layer based on CS-PAN copolymer demonstrated optimal transport properties and exhibited the highest water content in the permeate with a reasonably high permeation flux.
Collapse
|
16
|
Rynkowska E, Fatyeyeva K, Kujawa J, Dzieszkowski K, Wolan A, Kujawski W. The Effect of Reactive Ionic Liquid or Plasticizer Incorporation on the Physicochemical and Transport Properties of Cellulose Acetate Propionate-Based Membranes. Polymers (Basel) 2018; 10:polym10010086. [PMID: 30966119 PMCID: PMC6415109 DOI: 10.3390/polym10010086] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 11/16/2022] Open
Abstract
Pervaporation is a membrane-separation technique which uses polymeric and/or ceramic membranes. In the case of pervaporation processes applied to dehydration, the membrane should transport water molecules preferentially. Reactive ionic liquid (RIL) (3-(1,3-diethoxy-1,3-dioxopropan-2-yl)-1-methyl-1H-imidazol-3-ium) was used to prepare novel dense cellulose acetate propionate (CAP) based membranes, applying the phase-inversion method. The designed polymer-ionic liquid system contained ionic liquid partially linked to the polymeric structure via the transesterification reaction. The various physicochemical, mechanical, equilibrium and transport properties of CAP-RIL membranes were determined and compared with the properties of CAP membranes modified with plasticizers, i.e., tributyl citrate (TBC) and acetyl tributyl citrate (ATBC). Thermogravimetric analysis (TGA) testified that CAP-RIL membranes as well as CAP membranes modified with TBC and ATBC are thermally stable up to at least 120 °C. Tensile tests of the membranes revealed improved mechanical properties reflected by reduced brittleness and increased elongation at break achieved for CAP-RIL membranes in contrast to pristine CAP membranes. RIL plasticizes the CAP matrix, and CAP-RIL membranes possess preferable mechanical properties in comparison to membranes with other plasticizers investigated. The incorporation of RIL into CAP membranes tuned the surface properties of the membranes, enhancing their hydrophilic character. Moreover, the addition of RIL into CAP resulted in an excellent improvement of the separation factor, in comparison to pristine CAP membranes, in pervaporation dehydration of propan-2-ol. The separation factor β increased from ca. 10 for pristine CAP membrane to ca. 380 for CAP-16.7-RIL membranes contacting an azeotropic composition of water-propan-2-ol mixture (i.e., 12 wt % water).
Collapse
Affiliation(s)
- Edyta Rynkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France.
| | - Kateryna Fatyeyeva
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France.
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
| | - Krzysztof Dzieszkowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
| | - Andrzej Wolan
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
- Synthex Technologies Sp. z o.o., 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
| |
Collapse
|