1
|
Kang X, Yang Q, Ma J, Sun Q, Cheng H. Advances in Ceramic-Carbonate Dual-Phase Membrane Reactors for Direct CO 2 Separation and Utilization. MEMBRANES 2025; 15:53. [PMID: 39997679 PMCID: PMC11857180 DOI: 10.3390/membranes15020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025]
Abstract
Excessive (carbon dioxide) CO2 emissions are a primary factor contributing to climate change. As one of the crucial technologies for alleviating CO2 emissions, carbon capture and utilization (CCU) technology has attracted considerable global attention. Technologies for capturing CO2 in extreme circumstances are indispensable for regulating CO2 levels in industrial processes. The unique separation characteristics of the ceramic-carbonate dual-phase (CCDP) membranes are increasingly employed for CO2 separation at high temperatures due to their outstanding chemical, thermal durability, and mechanical strength. This paper presents an overview of CO2 capture approaches and materials. It also elaborates on the research progress of three types of CCDP membranes with distinct permeation mechanisms, concentrating on their principles, materials, and structures. Additionally, several typical membrane reactors, such as the dry reforming of methane (DRM) and reverse water-gas shift (RWGS), are discussed to demonstrate how captured CO2 can function as a soft oxidant, converting feedstocks into valuable products through oxidation pathways designed within a single reactor. Finally, the future challenges and prospects of high-temperature CCDP membrane technologies and their related reactors are proposed.
Collapse
Affiliation(s)
- Xue Kang
- Department of Chemical and Material Engineering, Lyuliang University, Lvliang 033001, China;
| | - Qing Yang
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China; (Q.Y.); (J.M.); (Q.S.)
| | - Jiajie Ma
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China; (Q.Y.); (J.M.); (Q.S.)
| | - Qiangchao Sun
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China; (Q.Y.); (J.M.); (Q.S.)
| | - Hongwei Cheng
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China; (Q.Y.); (J.M.); (Q.S.)
| |
Collapse
|
2
|
Luo H, He X, Li W, Niu Y, Li G. Chain Dynamics and Crystallization Behavior of Poly(ethylene oxide) in Imidazolium-Based Ionic Liquids with Different Cationic Structures. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huan Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Xi He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Wenze Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Yanhua Niu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Nabais AR, Francisco RO, Alves VD, Neves LA, Tomé LC. Poly(ethylene glycol) Diacrylate Iongel Membranes Reinforced with Nanoclays for CO 2 Separation. MEMBRANES 2021; 11:998. [PMID: 34940499 PMCID: PMC8703618 DOI: 10.3390/membranes11120998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
Despite the fact that iongels are very attractive materials for gas separation membranes, they often show mechanical stability issues mainly due to the high ionic liquid (IL) content (≥60 wt%) needed to achieve high gas separation performances. This work investigates a strategy to improve the mechanical properties of iongel membranes, which consists in the incorporation of montmorillonite (MMT) nanoclay, from 0.2 to 7.5 wt%, into a cross-linked poly(ethylene glycol) diacrylate (PEGDA) network containing 60 wt% of the IL 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][TFSI]). The iongels were prepared by a simple one-pot method using ultraviolet (UV) initiated polymerization of poly(ethylene glycol) diacrylate (PEGDA) and characterized by several techniques to assess their physico-chemical properties. The thermal stability of the iongels was influenced by the addition of higher MMT contents (>5 wt%). It was possible to improve both puncture strength and elongation at break with MMT contents up to 1 wt%. Furthermore, the highest ideal gas selectivities were achieved for iongels containing 0.5 wt% MMT, while the highest CO2 permeability was observed at 7.5 wt% MMT content, due to an increase in diffusivity. Remarkably, this strategy allowed for the preparation and gas permeation of self-standing iongel containing 80 wt% IL, which had not been possible up until now.
Collapse
Affiliation(s)
- Ana R. Nabais
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.N.); (R.O.F.)
| | - Rute O. Francisco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.N.); (R.O.F.)
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisabon, Portugal;
| | - Luísa A. Neves
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.N.); (R.O.F.)
| | - Liliana C. Tomé
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.N.); (R.O.F.)
| |
Collapse
|
4
|
Gouveia AS, Bumenn E, Rohtlaid K, Michaud A, Vieira TM, Alves VD, Tomé LC, Plesse C, Marrucho IM. Ionic liquid-based semi-interpenetrating polymer network (sIPN) membranes for CO2 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Friess K, Izák P, Kárászová M, Pasichnyk M, Lanč M, Nikolaeva D, Luis P, Jansen JC. A Review on Ionic Liquid Gas Separation Membranes. MEMBRANES 2021; 11:97. [PMID: 33573138 PMCID: PMC7911519 DOI: 10.3390/membranes11020097] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023]
Abstract
Ionic liquids have attracted the attention of the industry and research community as versatile solvents with unique properties, such as ionic conductivity, low volatility, high solubility of gases and vapors, thermal stability, and the possibility to combine anions and cations to yield an almost endless list of different structures. These features open perspectives for numerous applications, such as the reaction medium for chemical synthesis, electrolytes for batteries, solvent for gas sorption processes, and also membranes for gas separation. In the search for better-performing membrane materials and membranes for gas and vapor separation, ionic liquids have been investigated extensively in the last decade and a half. This review gives a complete overview of the main developments in the field of ionic liquid membranes since their first introduction. It covers all different materials, membrane types, their preparation, pure and mixed gas transport properties, and examples of potential gas separation applications. Special systems will also be discussed, including facilitated transport membranes and mixed matrix membranes. The main strengths and weaknesses of the different membrane types will be discussed, subdividing them into supported ionic liquid membranes (SILMs), poly(ionic liquids) or polymerized ionic liquids (PILs), polymer/ionic liquid blends (physically or chemically cross-linked 'ion-gels'), and PIL/IL blends. Since membrane processes are advancing as an energy-efficient alternative to traditional separation processes, having shown promising results for complex new separation challenges like carbon capture as well, they may be the key to developing a more sustainable future society. In this light, this review presents the state-of-the-art of ionic liquid membranes, to analyze their potential in the gas separation processes of the future.
Collapse
Affiliation(s)
- Karel Friess
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Pavel Izák
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Magda Kárászová
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Mariia Pasichnyk
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Marek Lanč
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
| | - Daria Nikolaeva
- Materials & Process Engineering, UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium; (D.N.); (P.L.)
| | - Patricia Luis
- Materials & Process Engineering, UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium; (D.N.); (P.L.)
| | | |
Collapse
|
6
|
Yasui T, Kamio E, Matsuyama H. Inorganic/organic nanocomposite ion gels with well dispersed secondary silica nanoparticles. RSC Adv 2020; 10:14451-14457. [PMID: 35498451 PMCID: PMC9051879 DOI: 10.1039/d0ra02478c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 01/20/2023] Open
Abstract
We have previously reported tough inorganic/organic nanocomposite (NC) ion gels composed of silica particles and poly(N,N-dimethylacrylamide) (PDMAAm) networks and a large amount of ionic liquid. In this study, the network structure and toughening mechanism of NC ion gels were investigated. The NC ion gels showed characteristic mechanical properties; i.e. the stress was significantly increased at a highly elongated state. In addition, the NC ion gels showed an almost elastic mechanical property, which was completely different from that of our other developed inorganic/organic tough ion gels named double-network (DN) ion gels. It was found from structural observation that secondary silica nanoparticles dispersed well in the NC ion gel. It was also found that some of the secondary silica nanoparticles had a ring-like structure which would incorporate PDMAAm chains. From the silica particle content dependency on stress-strain curves of inorganic/organic NC ion gels, it was inferred that the secondary silica particles could serve as a movable cross-linker of PDMAAm chains in the NC ion gel.
Collapse
Affiliation(s)
- Tomoki Yasui
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe Hyogo 657-8501 Japan
| | - Eiji Kamio
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe Hyogo 657-8501 Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe Hyogo 657-8501 Japan
| |
Collapse
|
7
|
Influence of Anion Structure on Thermal, Mechanical and CO 2 Solubility Properties of UV-Cross-Linked Poly(ethylene glycol) Diacrylate Iongels. MEMBRANES 2020; 10:membranes10030046. [PMID: 32192181 PMCID: PMC7143667 DOI: 10.3390/membranes10030046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 11/16/2022]
Abstract
Iongel-based CO2 separation membranes were prepared by fast (< 1 min) UV-initiated polymerization of poly(ethylene glycol) diacrylate (PEGDA) in the presence of different ionic liquids (ILs) with the [C2mim]+ cation and anions such as [TFSI]-, [FSI]-, [C(CN)3]- and [B(CN)4]-. The four ILs were completely miscible with the non-ionic PEGDA network. Transparent and free-standing iongels containing between 60 and 90 %wt of IL were obtained and characterized by diverse techniques (FTIR, TGA, DSC, DMTA, SEM, CO2 solubility and pure gas permeability). The thermal and mechanical stability of the iongels, as well as CO2 solubility, were found to be strictly dependent on the IL content and the anion's nature. The TGA results indicated that the iongels mostly follow the thermal profile of the respective neat ILs. The DMTA analysis revealed that the iongels based on fluorinated anions have higher storage modulus than those of cyano-functionalized anions. Conversely, the PEGDA-C(CN)3 iongels presented the highest CO2 solubility values ranging from 72 to 80 mmol/g. Single CO2 permeabilities of 583 ± 29 Barrer and ideal CO2/N2 selectivities of 66 ± 3 were obtained with the PEGDA-70 C(CN)3 iongel membrane. This work demonstrates that the combination of PEGDA with high contents of the best performing ILs is a promising and simple strategy, opening up new possibilities in the design of high-performance iongel membranes for CO2 separation.
Collapse
|
8
|
Yasui T, Fujinami S, Hoshino T, Kamio E, Matsuyama H. Energy dissipation via the internal fracture of the silica particle network in inorganic/organic double network ion gels. SOFT MATTER 2020; 16:2363-2370. [PMID: 32057064 DOI: 10.1039/c9sm02174d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inorganic/organic double network (DN) ion gels, which are composed of an inorganic silica particle network, an organic poly(N,N-dimethylacrylamide) (PDMAAm) network, and a large amount of ionic liquid, showed excellent mechanical strength of over 25 MPa compression fracture stress at an 80 wt% ionic liquid content. The excellent mechanical strength of these inorganic/organic DN ion gels was attributed to the energy dissipation of the inorganic/organic DN structure. It has been considered that the energy dissipation in inorganic/organic DN ion gels is caused by the internal fracture of the silica particle network, which is preferentially fractured by deformation. However, no studies aiming to investigate the internal fracture of the silica particle network in inorganic/organic DN ion gels have been conducted by direct approaches. In this study, the internal fracture of the silica particle network in the inorganic/organic DN ion gel was directly evaluated by a small angle X-ray scattering (SAXS) technique. The synchrotron SAXS measurements conducted under a uniaxial loading-unloading process demonstrated that the aggregation size of the silica particle network irreversibly decreased with uniaxial stretch. Based on these results, it was clarified that the energy dissipation of the inorganic/organic DN ion gels was attributed to the internal fracture of the silica particle network.
Collapse
Affiliation(s)
- Tomoki Yasui
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - So Fujinami
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Taiki Hoshino
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Eiji Kamio
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
9
|
Rebber M, Willa C, Koziej D. Organic-inorganic hybrids for CO 2 sensing, separation and conversion. NANOSCALE HORIZONS 2020; 5:431-453. [PMID: 32118212 DOI: 10.1039/c9nh00380k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Motivated by the air pollution that skyrocketed in numerous regions around the world, great effort was placed on discovering new classes of materials that separate, sense or convert CO2 in order to minimise impact on human health. However, separation, sensing and conversion are not only closely intertwined due to the ultimate goal of improving human well-being, but also because of similarities in material prerequisites -e.g. affinity to CO2. Partly inspired by the unrivalled performance of complex natural materials, manifold inorganic-organic hybrids were developed. One of the most important characteristics of hybrids is their design flexibility, which results from the combination of individual constituents with specific functionality. In this review, we discuss commonly used organic, inorganic, and inherently hybrid building blocks for applications in separation, sensing and catalytic conversion and highlight benefits like durability, activity, low-cost and large scale fabrication. Moreover, we address obstacles and potential future developments of hybrid materials. This review should inspire young researchers in chemistry, physics and engineering to identify and overcome interdisciplinary research challenges by performing academic research but also - based on the ever-stricter emission regulations like carbon taxes - through exchanges between industry and science.
Collapse
Affiliation(s)
- Matthias Rebber
- University of Hamburg, Institute for Nanostructure and Solid State Physics, Center for Hybrid Nanostructures (CHyN), Luruper Chaussee 149, Building 600, 22761 Hamburg, Germany.
| | | | | |
Collapse
|
10
|
Affiliation(s)
- Nikolai V. Ignat'ev
- Institut für Anorganische Chemie; Institut für nachhaltige Chemie & Katalyse mit Bor (ICB); Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB); Consultant, Merck KGaA; 64293 Darmstadt Germany
| | - Maik Finze
- Institut für Anorganische Chemie; Institut für nachhaltige Chemie & Katalyse mit Bor (ICB); Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
11
|
Liu Z, Wang W, Stadler FJ, Yan ZC. Rheology of Concentrated Polymer/Ionic Liquid Solutions: An Anomalous Plasticizing Effect and a Universality in Nonlinear Shear Rheology. Polymers (Basel) 2019; 11:E877. [PMID: 31091730 PMCID: PMC6572180 DOI: 10.3390/polym11050877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/27/2019] [Accepted: 05/05/2019] [Indexed: 12/17/2022] Open
Abstract
An anomalous plasticizing effect was observed in polymer/ionic liquid (IL) solutions by applying broad range of rheological techniques. Poly(ethylene oxide)(PEO)/IL solutions exhibit stronger dynamic temperature dependence than pure PEO, which is in conflict with the knowledge that lower-Tg solvent increases the fractional free volume. For poly(methy methacrylate)(PMMA)/IL solutions, the subtle anomaly was detected from the fact that the effective glass transition temperature Tg,eff of PMMA in IL is higher than the prediction of the self-concentration model, while in conventional polymer solutions, Tg,eff follows the original Fox equation. Observations in both solutions reveal retarded segmental dynamics, consistent with a recent simulation result (Macromolecules, 2018, 51, 5336) that polymer chains wrap the IL cations by hydrogen bonding interactions and the segmental unwrapping delays their relaxation. Start-up shear and nonlinear stress relaxation tests of polymer/IL solutions follow a universal nonlinear rheological behavior as polymer melts and solutions, indicating that the segment-cation interaction is not strong enough to influence the nonlinear chain orientation and stretch. The present work may arouse the further theoretical, experimental, and simulation interests in interpreting the effect of complex polymer-IL interaction on the dynamics of polymer/IL solutions.
Collapse
Affiliation(s)
- Zhonghua Liu
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518055, China.
| | - Wei Wang
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518055, China.
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518055, China.
| | - Zhi-Chao Yan
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
12
|
Lim JY, Lee JH, Park MS, Kim JH, Kim JH. Hybrid membranes based on ionic-liquid-functionalized poly(vinyl benzene chloride) beads for CO2 capture. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Wang L, Jia J, Faheem M, Tian Y, Zhu G. Fabrication of triazine-based Porous Aromatic Framework (PAF) membrane with structural flexibility for gas mixtures separation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Hirota Y, Yamamoto Y, Nakai T, Hayami S, Nishiyama N. Application of silylated ionic liquid-derived organosilica membranes to simultaneous separation of methanol and H2O from H2 and CO2 at high temperature. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Yasui T, Kamio E, Matsuyama H. Inorganic/Organic Double-Network Ion Gels with Partially Developed Silica-Particle Network. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10622-10633. [PMID: 30119613 DOI: 10.1021/acs.langmuir.8b01930] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tough inorganic/organic composite network gels consisting of a partially developed silica-particle network and a large amount of an ionic liquid, named micro-double-network (μ-DN) ion gel, are fabricated via two methods. One is a one-pot/one-step process conducted using a simultaneous network formation via sol-gel reaction of tetraethyl orthosilicate and free radical polymerization of N, N-dimethylacrylamide in an ionic liquid. When the network formation rates of the inorganic and organic networks are almost the same, the μ-DN structure is formed. The second method is simpler and involved the use of silica nanoparticles as the starting material. By controlling the dispersion state of the silica nanoparticles in an ionic liquid, the μ-DN structure is formed. In both μ-DN ion gels, silica nanoparticles partially aggregate and form network-like clusters. When a large deformation is induced in the μ-DN ion gels, the silica-particle clusters rupture and dissipate the loaded energy. The fracture stress and Young's modulus of the μ-DN ion gel increase as the size of the silica nanoparticles decreases. The increment in the mechanical strength would have been caused by the increase in the total van der Waals attraction forces and the total number of hydrogen bonding in the silica-particle networks.
Collapse
Affiliation(s)
- Tomoki Yasui
- Center for Membrane and Film Technology and Department of Chemical Science and Engineering , Kobe University , 1-1 Rokkodai-cho , Nada-ku, Kobe , Hyogo 657-8501 , Japan
| | - Eiji Kamio
- Center for Membrane and Film Technology and Department of Chemical Science and Engineering , Kobe University , 1-1 Rokkodai-cho , Nada-ku, Kobe , Hyogo 657-8501 , Japan
| | - Hideto Matsuyama
- Center for Membrane and Film Technology and Department of Chemical Science and Engineering , Kobe University , 1-1 Rokkodai-cho , Nada-ku, Kobe , Hyogo 657-8501 , Japan
| |
Collapse
|
16
|
Ranjbaran F, Kamio E, Matsuyama H. Toluene vapor removal using an inorganic/organic double-network ion gel membrane. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1476545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Fatemeh Ranjbaran
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Hyogo, Japan
| | - Eiji Kamio
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Hyogo, Japan
| | - Hideto Matsuyama
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Hyogo, Japan
| |
Collapse
|