1
|
Zhang L, Yang T, Zhao Z, Wang Z, Lin S, Zhao S. Thin-film composite vapor-gap membrane for pressure-driven distillation. SCIENCE ADVANCES 2025; 11:eadu6787. [PMID: 40344076 PMCID: PMC12063649 DOI: 10.1126/sciadv.adu6787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Pressure-driven distillation (PD), as an emerging technology, holds tremendous potential for producing freshwater from nontraditional water sources. In this process, a sufficient hydraulic pressure is applied to drive water evaporation and vapor transport across a vapor-gap membrane. The development of the PD process critically depends on the availability of robust and large-area superhydrophobic membranes. Here, we propose an ultraselective superhydrophobic thin-film composite (TFC) vapor-gap membrane with confined transport channels toward the PD process, which can be manufactured scale-up through a facile swelling-assisted deposition strategy. The TFC-PD membrane demonstrates separation capabilities, achieving near-complete rejections of nonvolatile solutes, including salts, boron, and urea. Featured by a vapor-gap superhydrophobic layer, the TFC-PD membrane exhibits superior chlorine and scaling resistance and maintains stable performance over time without being oxidized or scaling. This work offers notable advancements in the microstructural design of PD membranes and the development of scalable robust TFC membranes for the PD process.
Collapse
Affiliation(s)
- Li Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Tianxiang Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zhenyi Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zhi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
- Department of Chemical and Bimolecular Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
| | - Song Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
2
|
Cao T, Wang L, Pataroque KE, Wang R, Elimelech M. Relating Solute-Membrane Electrostatic Interactions to Solute Permeability in Reverse Osmosis Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5819-5828. [PMID: 40070342 DOI: 10.1021/acs.est.4c13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Despite the widespread use of reverse osmosis (RO) membranes in water desalination, the role of solute-membrane interactions in solute transport remains complex and relatively not well understood. This study elucidates the relationship between solute-membrane electrostatic interactions and solute permeability in RO membranes. The transport of salt and neutral molecules through charged polyamide (PA) and uncharged cellulose triacetate (CTA) RO membranes was examined. Results show that salt rejection and salt permeability in the PA membrane are highly dependent on the solution pH due to the variations of membrane charge density and the Donnan potential at the membrane-solution interface. Specifically, a higher salt rejection (and hence lower salt permeability) of the PA membrane is observed under alkaline conditions compared to acidic conditions. This observation is attributed to the enhanced Donnan potential at higher solution pH, which hinders co-ion partitioning into the membrane. In contrast, for salt transport through the CTA membrane and neutral solute transport through both membranes, solute permeability is independent of the solution pH and solute concentration due to the negligible Donnan effect. Overall, our results demonstrate the important role of solute-membrane electrostatic interactions, combined with steric exclusion, in regulating solute permeability in RO membranes.
Collapse
Affiliation(s)
- Tianchi Cao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Li Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kevin E Pataroque
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Menachem Elimelech
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Rice WaTER Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Maeda Y. Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 2: Countermeasures and Applications. MEMBRANES 2025; 15:94. [PMID: 40137046 PMCID: PMC11943549 DOI: 10.3390/membranes15030094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
Fouling, particularly from organic fouling and biofouling, poses a significant challenge in the RO/NF treatment of marginal waters, especially wastewater. Part 1 of this review detailed LMWOC fouling mechanisms. Part 2 focuses on countermeasures and applications. Effective fouling prevention relies on pretreatment, early detection, cleaning, optimized operation, and in situ membrane modification. Accurate fouling prediction is crucial. Preliminary tests using flat-sheet membranes or small-diameter modules are recommended. Currently, no specific fouling index exists for LMWOC fouling. Hydrophobic membranes, such as polyamide, are proposed as alternatives to the standard silt density index (SDI) filter. Once LMWOC fouling potential is assessed, suitable pretreatment methods can be implemented. These include adsorbents, specialized water filters, oxidative decomposition, and antifoulants. In situations where pretreatment is impractical, alternative strategies like high pH operation might be considered. Membrane cleaning becomes necessary upon fouling; however, standard cleaning often fails to fully restore the original flow. Specialized CIP chemicals, including organic solvent-based and oxidative agents, are required. Conversely, LMWOC fouling typically leads to a stabilized flow rate reduction rather than a continuous decline. Aggressive cleaning may be avoided if the resulting operating pressure increase is acceptable. When a significant flow rate drop occurs and LMWOC fouling is suspected, analysis of the fouled membrane is necessary for identification. Standard FT-IR often fails to detect LMWOCs. Solvent extraction followed by GC-MS is required. Pyrolysis GC-MS, which eliminates the extraction step, shows promise. The review concludes by examining how LMWOCs can be strategically utilized to enhance membrane rejection and restore deteriorated membranes.
Collapse
Affiliation(s)
- Yasushi Maeda
- LG Chem Japan Co., Ltd., Kyobashi Trust Tower 12F, 2-1-3 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| |
Collapse
|
4
|
Oh H, Samineni L, Vogler RJ, Yao C, Behera H, Dhiman R, Horner A, Kumar M. Approaching Ideal Selectivity with Bioinspired and Biomimetic Membranes. ACS NANO 2025; 19:31-53. [PMID: 39718215 DOI: 10.1021/acsnano.4c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The applications of polymeric membranes have grown rapidly compared to traditional separation technologies due to their energy efficiency and smaller footprint. However, their potential is not fully realized due, in part, to their heterogeneity, which results in a "permeability-selectivity" trade-off for most membrane applications. Inspired by the intricate architecture and excellent homogeneity of biological membranes, bioinspired and biomimetic membranes (BBMs) aim to emulate biological membranes for practical applications. This Review highlights the potential of BBMs to overcome the limitations of polymeric membranes by utilizing the "division of labor" between well-defined permeable pores and impermeable matrix molecules seen in biological membranes. We explore the exceptional performance of membranes in biological organisms, focusing on their two major components: membrane proteins (biological channels) and lipid matrix molecules. We then discuss how these natural materials can be replaced with artificial mimics for enhanced properties and how macro-scale BBMs are developed. We highlight key demonstrations in the field of BBMs that draw upon the factors responsible for transport through biological membranes. Additionally, current state-of-the-art methods for fabrication of BBMs are reviewed with potential challenges and prospects for future applications. Finally, we provide considerations for future research that could enable BBMs to progress toward scale-up and enhanced applicability.
Collapse
Affiliation(s)
- Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Laxmicharan Samineni
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Ronald J Vogler
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Chenhao Yao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Harekrushna Behera
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Raman Dhiman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Manish Kumar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Morović S, Drmić KM, Babić S, Košutić K. Maximizing N-Nitrosamine Rejection via RO Membrane Plugging with Hexylamine and Hexamethylenediamine. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1117. [PMID: 38998722 PMCID: PMC11243267 DOI: 10.3390/nano14131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
The rapid expansion of urban areas and the increasing demand for water resources necessitate substantial investments in technologies that enable the reuse of municipal wastewater for various purposes. Nonetheless, numerous challenges remain, particularly regarding disinfection by-products (DBPs), especially carcinogenic compounds such as N-nitrosamines (NTRs). To tackle the ongoing issues associated with reverse osmosis (RO) membranes, this study investigated the rejection of NTRs across a range of commercially available RO membranes. In addition, the research aimed to improve rejection rates by integrating molecular plugs into the nanopores of the polyamide (PA) layer. Hexylamine (HEX) and hexamethylenediamine (HDMA), both linear chain amines, have proven to be effective as molecular plugs for enhancing the removal of NTRs. Given the environmental and human health concerns associated with linear amines, the study also aimed to assess the feasibility of diamine molecules as potential alternatives. The application of molecular plugs led to changes in pore size distribution (PSD) and effective pore number, resulting in a decrease in membrane permeability (from 5 to 33%), while maintaining levels suitable for RO processes. HEX and HDMA exhibited a positive effect on NTR rejection with ACM1, ACM5 and BW30LE membranes. In particular, NDMA rejection, the smallest molecule of the tested NTRs, with ACM1 was improved by 65.5% and 70.6% after treatment with HEX and HDMA, respectively.
Collapse
Affiliation(s)
- Silvia Morović
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 20, 10000 Zagreb, Croatia
| | - Katarina Marija Drmić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 20, 10000 Zagreb, Croatia
| | - Sandra Babić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 20, 10000 Zagreb, Croatia
| | - Krešimir Košutić
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 20, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Khanzada NK, Rehman S, Kharraz JA, Farid MU, Khatri M, Hilal N, An AK. Reverse osmosis membrane functionalized with aminated graphene oxide and polydopamine nanospheres plugging for enhanced NDMA rejection and anti-fouling performance. CHEMOSPHERE 2023; 338:139557. [PMID: 37478994 DOI: 10.1016/j.chemosphere.2023.139557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
The use of reverse osmosis (RO) for water reclamation has become an essential part of the water supply owing to the ever-increasing water demand and the utmost performance of the RO membranes. Despite the global RO implementation, its inferior rejection against low molecular weight contaminants of emerging concerns (CECs) (i.e., N-nitrosodimethylamine (NDMA)) and propensity to fouling remain bottle-neck thus affecting process robustness for water reuse. This study aims to enhance both the rejection and antifouling properties of the RO membrane. Herein for the first time, we report RO membrane modification using polydopamine nanospheres (PDAns) followed by aminated-graphene oxide (AGO) deposition as an effective approach to overcome these challenges. The modification of the RO membrane using PDAns-AGO resulted in 89.3 ± 2.7% rejection compared to the pristine RO membrane which demonstrated 69.2 ± 2.1% NDMA rejection. This significant improvement can be ascribed to the plugging and shielding of defective areas (formed during interfacial polymerization) of the polyamide layer through active PDAns and AGO layers and to the added sieving mechanism that arose through narrow channels of the AGO owing to its reduction. Moreover, the in-situ and non-destructive fouling monitoring using optical coherence tomography (OCT) revealed that the PDAns-AGO coating enhanced both the anti-scaling and anti-biofouling characteristics. The improved hydrophilicity and bactericidal effect together with roughness and surface charge suppression synergistically enhanced anti-fouling properties. This study provides a new direction for safe and cost-effective water reuse practices. The membrane with high selectivity against CECs such as NDMA has the potential to eliminate permeate staging using second pass RO and other advanced oxidation processes which are utilized as a tertiary treatment to make reclaimed water suitable for potable/non-potable application.
Collapse
Affiliation(s)
- Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Shazia Rehman
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muzamil Khatri
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
7
|
Li Y, Li J, Zhu D, Qian G, Tang H. Facile dual-functionalization of NF membranes with excellent chlorine resistance and good antifouling property by in-situ grafting of zwitterions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
8
|
Ghiasi S, Mohammadi T, Tofighy MA. Hybrid adsorptive nanofiltration hollow fiber membranes with charge-patterned UiO-66 incorporated thin-film nanocomposite selective layer for enhanced boron removal. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Duan R, Lv X, Yan W, Zhou Y, Gao C. Fabrication of high boron removal reverse osmosis membrane with broad industrial application prospect by introducing sulfonate groups through a polyvinyl alcohol coating. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Oliveira CPMD, Moreira VR, Lebron YAR, Vasconcelos CKBD, Koch K, Viana MM, Drewes JE, Amaral MCS. Converting recycled membranes into photocatalytic membranes using greener TiO 2-GRAPHENE oxide nanomaterials. CHEMOSPHERE 2022; 306:135591. [PMID: 35798155 DOI: 10.1016/j.chemosphere.2022.135591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Despite the widespread use of membrane separation processes for water treatment, operation costs and fouling still restrict their application. Costs can be overcome by recycled membranes whereas fouling can be mitigated by membrane modification. In this work, the performance of recycled reverse osmosis membranes modified by greener titanium dioxide (TiO2) and graphene oxide (GO) in different modification routes were investigated and compared. The use of recycled membranes as a support acted more than a strategy for costs reduction, but also as an alternative for solid waste reduction. Low adhesion of nanoparticulate materials to the membrane surfaces were verified in depositions by self-assembly, whereas filtration and modification with dopamine generated membranes with well adhered and homogeneous layers. Considering the stability, permeability, and rejection efficiency of dyes as model substrates, the membranes modified with the aid of dopamine-TiO2-GO were the most promising. The nanomaterials increased the membrane hydrophilicity and formed a hydrated layer that repels the organic contaminants and reduces fouling. Besides membrane rejection, adsorption (contribution: ∼10%) and photocatalysis (contribution: ∼20%) were additional mechanisms for pollutants removal by the modified membranes. The photocatalytic membrane modified with dopamine-TiO2-GO was furthermore evaluated for the removal of six different pharmaceutical active compounds (PhACs), noticing gains in terms of removal efficiency (up to 95.7%) and fouling mitigation for the modified membrane compared to the original membranes. The photocatalytic activity still contributed to a simultaneous degradation of PhACs avoiding the generation of a concentrated stream for further disposal.
Collapse
Affiliation(s)
- Caique Prado Machado de Oliveira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil
| | | | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Marcelo Machado Viana
- Department of Chemistry, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Li C, Zhao Y, Lai GS, Wang R. Fabrication of fluorinated polyamide seawater reverse osmosis membrane with enhanced boron removal. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Liu X, Xu C, Chen P, Li K, Zhou Q, Ye M, Zhang L, Lu Y. Advances in Technologies for Boron Removal from Water: A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10671. [PMID: 36078388 PMCID: PMC9517912 DOI: 10.3390/ijerph191710671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Boron overabundance in aquatic environment raises severe concerns about the environment and human health because it is toxic to various crops and induces many human and animal diseases with long-term consequences. In response to the boron pollution of water resources and the difficulty of eliminating boron from water for production and living purposes, this article summarizes the progress in research on boron removal technology, addressing the following aspects: (1) the reasons for the difficulty of removing boron from water (boron chemistry); (2) ecological/biological toxicity and established regulations; (3) analysis of different existing processes (membrane processes, resin, adsorption, chemical precipitation, (electric) coagulation, extraction, and combined methods) in terms of their mechanisms, effectiveness, and limitations; (4) prospects for future studies and possible improvements in applicability and recyclability. The focus of this paper is thus to provide a comprehensive summary of reported deboronation processes to date, which will definitely identify directions for the development of boron removal technology in the future.
Collapse
Affiliation(s)
- Xiaowei Liu
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou 310058, China
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Congjin Xu
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Peng Chen
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Kexin Li
- Institute of Municipal Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qikun Zhou
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Miaomaio Ye
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou 310058, China
- Institute of Municipal Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liang Zhang
- Huzhou Water Group Co., Ltd., Huzhou 313000, China
| | - Ye Lu
- Huzhou Water Group Co., Ltd., Huzhou 313000, China
| |
Collapse
|
13
|
You X, Cao L, Liu Y, Wu H, Li R, Xiao Q, Yuan J, Zhang R, Fan C, Wang X, Yang P, Yang X, Ma Y, Jiang Z. Charged Nanochannels in Covalent Organic Framework Membranes Enabling Efficient Ion Exclusion. ACS NANO 2022; 16:11781-11791. [PMID: 35771947 DOI: 10.1021/acsnano.2c04767] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Controllable ion transport through nanochannels is crucial for biological and artificial membrane systems. Covalent organic frameworks (COFs) with regular and tunable nanochannels are emerging as an ideal material platform to develop synthetic membranes for ion transport. However, ion exclusion by COF membranes remains challenging because most COF materials have large-sized nanochannels leading to nonselective transport of small ions. Here we develop ionic COF membranes (iCOFMs) to control ion transport through charged framework nanochannels, the interior surfaces of which are covered with arrayed sulfonate groups to render superior charge density. The overlap of an electrical double layer in charged nanochannels blocks the entry of co-ions, narrows their passageways, and concomitantly restrains the permeation of counterions via the charge balance. These highly charged large-sized nanochannels within the iCOFM enable ion exclusion while maintaining intrinsically high water permeability. Our results reveal possibilities for controllable ion transport based on COF membranes for water purification, ionic separation, sensing, and energy conversion.
Collapse
Affiliation(s)
- Xinda You
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Li Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yawei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China
| | - Runlai Li
- Department of Chemistry, National University of Singapore, Singapore 117549, Singapore
| | - Qianxiang Xiao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiaoyao Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Pengfei Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiaoyu Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yu Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
14
|
In situ PEGylation of polyamide network of thin film composite membrane by inter-polymer H-bond complex formation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
He Q, Hu Y, Li X, Liu M, Yu S, Gao C. Pore size regulation of polyamide composite membrane via a sol-gel process confined within the selective layer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Hybrid nanofiltration thin film hollow fiber membranes with adsorptive supports containing bentonite and LDH nanoclays for boron removal. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Habib S, Weinman ST. Modification of polyamide reverse osmosis membranes for the separation of urea. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Bouraoui H, Khemakhem A, Ben Romdhane MR, Tessier-Doyen N, Srasra E. Chemical Modification of Polyamide Thin-Film Composite Membrane by Surface Grafting of a Vinyl-Based Monomer. J WATER CHEM TECHNO+ 2022. [DOI: 10.3103/s1063455x22020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Stolov M, Keisar O, Cohen Y, Freger V. Elucidating the Effect of Aliphatic Molecular Plugs on Ion-Rejecting Properties of Polyamide Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13335-13343. [PMID: 35263078 DOI: 10.1021/acsami.1c24977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyamide RO membranes are widely used for seawater desalination owing to their high salt rejection and water permeability; however, improved selectivity-permeability trade-off is still desired. "Molecular plugs," small molecules immobilized within the polyamide structure, offer an attractive approach; however, their overall effect on polyamide physicochemical properties poses many questions. Here, we analyze the effect of decylamine, a promising plug, and a few charged and uncharged mimics on polyamide films using several in situ techniques. Electrochemical impedance spectroscopy (EIS) reveals a complex pH-dependent response, whereby, upon exposure to amine solution, conductivity first rapidly drops; however, under alkaline conditions, when amine is uncharged, the trend subsequently slowly reverses, and conductivity increases. This slow reversal was observed for noncharged alcohols of similar size as well, but not for larger surfactant molecules. The reversal was assigned to the uptake of plug molecules within polyamide, as opposed to the fast initial drop assigned to surface adsorption. EIS and quartz-crystal microbalance (QCM) results showed that exposure to decylamine under alkaline conditions ultimately led to an irreversible decrease in conductivity, that is, stronger ion rejection, remaining after re-exposure of polyamide to amine-free buffer. This suggests that plug uptake within polyamide resulted in polymer stress, indeed observed in surface stress measurements, and subsequent relaxation. The results indicate that the moderate size of decylamine and conditions minimizing its charge were optimal for irreversible change; however, charge interactions helped maximize its binding within polymer and induce the desired sustained change in selectivity. The results have many potential implications for improving current membrane desalination technology and increasing inherent membrane selectivity toward hard-to-remove species.
Collapse
Affiliation(s)
- Mikhail Stolov
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa 32000, Israel
| | - Or Keisar
- Nancy and Stephen Grand Technion Energy Program, Technion - IIT, Haifa 32000, Israel
- Nuclear Research Centre-Negev, P.O.B. 9001, Be'er Sheva 84190, Israel
| | - Yair Cohen
- Nuclear Research Centre-Negev, P.O.B. 9001, Be'er Sheva 84190, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa 32000, Israel
- Nancy and Stephen Grand Technion Energy Program, Technion - IIT, Haifa 32000, Israel
- Grand Water Research Institute, Technion - IIT, Haifa 32000, Israel
| |
Collapse
|
20
|
Surface engineering design of polyamide membranes for enhanced boron removal in seawater desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Elucidating the role of graphene oxide layers in enhancing N-Nitrosodimethylamine (NDMA) rejection and antibiofouling property of RO membrane simultaneously. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Bao X, Long W, Liu H, She Q. Boron and salt ion transport in electrically assisted reverse osmosis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
|
24
|
Landsman MR, Rivers F, Pedretti BJ, Freeman BD, Lawler DF, Lynd NA, Katz LE. Boric acid removal with polyol-functionalized polyether membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Lim YJ, Goh K, Kurihara M, Wang R. Seawater desalination by reverse osmosis: Current development and future challenges in membrane fabrication – A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119292] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Jarma YA, Karaoğlu A, Tekin Ö, Baba A, Ökten HE, Tomaszewska B, Bostancı K, Arda M, Kabay N. Assessment of different nanofiltration and reverse osmosis membranes for simultaneous removal of arsenic and boron from spent geothermal water. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124129. [PMID: 33082019 DOI: 10.1016/j.jhazmat.2020.124129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/13/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
One of the factors that determine agricultural crops' yield is the quality of water used during irrigation. In this study, we assessed the usability of spent geothermal water for agricultural irrigation after membrane treatment. Preliminary membrane tests were conducted on a laboratory-scale set up followed by mini-pilot scale tests in a geothermal heating center. In part I, three commercially available membranes (XLE BWRO, NF90, and Osmonics CK- NF) were tested using a cross-flow flat-sheet membrane testing unit (Sepa CF II, GE-Osmonics) under constant applied pressure of 20 bar. In part II, different spiral wound membranes (TR-NE90-NF, TR-BE-BW, and BW30) other than the ones used in laboratory tests were employed for the mini-pilot scale studies in a continuous mode. Water recovery and applied pressure were maintained constant at 60% and 12 bar, respectively. Performances of the membranes were assessed in terms of the permeate flux, boron and arsenic removals. In laboratory tests, the permeate fluxes were measured as 94.3, 87.9, and 64.3 L m-2 h-1 for XLE BWRO, CK-NF and NF90 membranes, respectively. The arsenic removals were found as 99.0%, 87.5% and 83.6% while the boron removals were 56.8%, 54.2%, and 26.1% for XLE BWRO, NF90 and CK-NF membranes, respectively. In field tests, permeate fluxes were 49.9, 26.8 and 24.0 L m-2 h-1 for TR-NE90-NF, BW30-RO and TR-BE-BW membranes, respectively. Boron removals were calculated as 49.9%, 44.1% and 40.7% for TR-BE-BW, TR-NE90-NF and BW30-RO membranes, respectively. Removal efficiencies of arsenic in mini-pilot scale membrane tests were all over 90%. Quality of the permeate water produced was suitable for irrigation in terms of the electrical conductivity (EC) and the total dissolved solids (TDS) for all tested membranes with respect to guidelines set by the Turkish Ministry of Environment and Urbanisation (TMEU). However, XLE BWRO, CK-NF and NF90 membranes failed to meet the required limits for irrigation in terms of boron and arsenic concentrations in the product water. The permeate streams of TR-BE-BW, TR-NE90-NF and BW30-RO membranes complied with the irrigation water standards in terms of EC, TDS and arsenic concentration while boron concentration remained above the allowable limit.
Collapse
Affiliation(s)
- Yakubu A Jarma
- Ege University, Department of Chemical Engineering, 35100 Izmir, Turkey
| | - Aslı Karaoğlu
- Ege University, Department of Chemical Engineering, 35100 Izmir, Turkey; Ege University, Graduate School of Science, Division of Environmental Sciences, Izmir, Turkey
| | - Özge Tekin
- Ege University, Department of Chemical Engineering, 35100 Izmir, Turkey
| | - Alper Baba
- Izmir Institute of Technology, Department of International Water Resources, 35430 Urla, Izmir, Turkey
| | - H Eser Ökten
- Izmir Institute of Technology, Department of Environmental Engineering, Izmir, Turkey
| | - Barbara Tomaszewska
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland; AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland
| | - Kamil Bostancı
- Ege University, Department of Chemistry, Izmir, Turkey; Dokuz Eylul University, Torbalı Vocational School, Mining Technology Programme, Izmir, Turkey
| | - Müşerref Arda
- Ege University, Department of Chemistry, Izmir, Turkey
| | - Nalan Kabay
- Ege University, Department of Chemical Engineering, 35100 Izmir, Turkey.
| |
Collapse
|
27
|
Ali Z, Wang Y, Ogieglo W, Pacheco F, Vovusha H, Han Y, Pinnau I. Gas separation and water desalination performance of defect-free interfacially polymerized para-linked polyamide thin-film composite membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118572] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Yang Z, Sun PF, Li X, Gan B, Wang L, Song X, Park HD, Tang CY. A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15563-15583. [PMID: 33213143 DOI: 10.1021/acs.est.0c05377] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The separation properties of polyamide reverse osmosis and nanofiltration membranes, widely applied for desalination and water reuse, are constrained by the permeability-selectivity upper bound. Although thin-film nanocomposite (TFN) membranes incorporating nanomaterials exhibit enhanced water permeance, their rejection is only moderately improved or even impaired due to agglomeration of nanomaterials and formation of defects. A novel type of TFN membranes featuring an interlayer of nanomaterials (TFNi) has emerged in recent years. These novel TFNi membranes show extraordinary improvement in water flux (e.g., up to an order of magnitude enhancement) along with better selectivity. Such enhancements can be achieved by a wide selection of nanomaterials, ranging from nanoparticles, one-/two-dimensional materials, to interfacial coatings. The use of nanostructured interlayers not only improves the formation of polyamide rejection layers but also provides an optimized water transport path, which enables TFNi membranes to potentially overcome the longstanding trade-off between membrane permeability and selectivity. Furthermore, TFNi membranes can potentially enhance the removal of heavy metals and micropollutants, which is critical for many environmental applications. This review critically examines the recent developments of TFNi membranes and discusses the underlying mechanisms and design criteria. Their potential environmental applications are also highlighted.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| | - Peng-Fei Sun
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bowen Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Li Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoxiao Song
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| |
Collapse
|
29
|
Fujioka T, Osako M, Tanabe S, Kodamatani H, Shintani T. Plugging nonporous polyamide membranes for enhanced rejection of small contaminants during advanced wastewater treatment. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Li SL, Wu P, Wang J, Hu Y. High-performance zwitterionic TFC polyamide nanofiltration membrane based on a novel triamine precursor. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Verbeke R, Seynaeve M, Bastin M, Davenport DM, Eyley S, Thielemans W, Koeckelberghs G, Elimelech M, Vankelecom IF. The significant role of support layer solvent annealing in interfacial polymerization: The case of epoxide-based membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Controlled chlorination of polyamide reverse osmosis membranes at real scale for enhanced desalination performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Organic composition in feed solution of forward osmosis membrane systems has no impact on the boron and water flux but reduces scaling. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Fujioka T, Osako M, Oda K, Shintani T, Kodamatani H. Impact of heat modification conditions on the removal of N-nitrosodimethylamine by polyamide reverse osmosis membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Li Y, Wang S, Song X, Zhou Y, Shen H, Cao X, Zhang P, Gao C. High boron removal polyamide reverse osmosis membranes by swelling induced embedding of a sulfonyl molecular plug. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117716] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Dou P, Zhao S, Song J, He H, She Q, Li XM, Zhang Y, He T. Forward osmosis concentration of a vanadium leaching solution. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Confined nanobubbles shape the surface roughness structures of thin film composite polyamide desalination membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.027] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Liu L, Xie X, Qi S, Li R, Zhang X, Song X, Gao C. Thin film nanocomposite reverse osmosis membrane incorporated with UiO-66 nanoparticles for enhanced boron removal. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.072] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Chen K, Xiao C, Liu H, Ling H, Chu Z, Hu Z. Design of robust twisted fiber bundle-reinforced cellulose triacetate hollow fiber reverse osmosis membrane with thin separation layer for seawater desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Ali Z, Al Sunbul Y, Pacheco F, Ogieglo W, Wang Y, Genduso G, Pinnau I. Defect-free highly selective polyamide thin-film composite membranes for desalination and boron removal. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Graphene oxide surface modification of polyamide reverse osmosis membranes for improved N-nitrosodimethylamine (NDMA) removal. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Xia M, Chen Z, Li Y, Li C, Ahmad NM, Cheema WA, Zhu S. Removal of Hg(ii) in aqueous solutions through physical and chemical adsorption principles. RSC Adv 2019; 9:20941-20953. [PMID: 35515526 PMCID: PMC9066024 DOI: 10.1039/c9ra01924c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/20/2019] [Indexed: 12/07/2022] Open
Abstract
Adsorption has been the focus of research on the treatment of heavy metal mercury pollution since it is among the most toxic heavy metals in existence.
Collapse
Affiliation(s)
- Mengdan Xia
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Zhixin Chen
- Engineering Materials Institute
- School of Mechanical, Materials & Mechatronics Engineering
- University of Wollongong
- Wollongong
- Australia
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Chuanhua Li
- Shanghai Solid Waste Disposal Co. Ltd
- Shanghai
- PR China
| | - Nasir M. Ahmad
- Polymer Research Lab
- School of Chemical and Materials Engineering (SCME)
- National University of Sciences and Technology (NUST)
- Islamabad-44000
- Pakistan
| | - Waqas A. Cheema
- Polymer Research Lab
- School of Chemical and Materials Engineering (SCME)
- National University of Sciences and Technology (NUST)
- Islamabad-44000
- Pakistan
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| |
Collapse
|
43
|
Tiron LG, Vlad M, Baltă Ş. Research on Hydrophilic Nature of Polyvinylpyrrolidone on Polysulfone Membrane Filtration. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/374/1/012059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|