1
|
Ishaq A, Said MIM, Azman SB, Dandajeh AA, Lemar GS, Jagun ZT. Utilization of microbial fuel cells as a dual approach for landfill leachate treatment and power production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41683-41733. [PMID: 38012494 PMCID: PMC11219420 DOI: 10.1007/s11356-023-30841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
Landfill leachate, which is a complicated organic sewage water, presents substantial dangers to human health and the environment if not properly handled. Electrochemical technology has arisen as a promising strategy for effectively mitigating contaminants in landfill leachate. In this comprehensive review, we explore various theoretical and practical aspects of methods for treating landfill leachate. This exploration includes examining their performance, mechanisms, applications, associated challenges, existing issues, and potential strategies for enhancement, particularly in terms of cost-effectiveness. In addition, this critique provides a comparative investigation between these treatment approaches and the utilization of diverse kinds of microbial fuel cells (MFCs) in terms of their effectiveness in treating landfill leachate and generating power. The examination of these technologies also extends to their use in diverse global contexts, providing insights into operational parameters and regional variations. This extensive assessment serves the primary goal of assisting researchers in understanding the optimal methods for treating landfill leachate and comparing them to different types of MFCs. It offers a valuable resource for the large-scale design and implementation of processes that ensure both the safe treatment of landfill leachate and the generation of electricity. The review not only provides an overview of the current state of landfill leachate treatment but also identifies key challenges and sets the stage for future research directions, ultimately contributing to more sustainable and effective solutions in the management of this critical environmental issue.
Collapse
Affiliation(s)
- Aliyu Ishaq
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Mohd Ismid Mohd Said
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
| | - Shamila Binti Azman
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
| | - Aliyu Adamu Dandajeh
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Gul Sanga Lemar
- Department of Biology, Faculty of Science, Kabul University, Jamal Mina, Kabul, Afghanistan
- Faculty of Biology, Department of Botany, Kabul University, Kart-e-Char, Kabul, Afghanistan
| | - Zainab Toyin Jagun
- Department of Real Estate, School of Built Environment Engineering and Computing, Leeds Beckett University, City Campus, Leeds, UK.
| |
Collapse
|
2
|
Malkapuram ST, Seepana MM, Sonawane SH, Lakhera SK, Randviir E. ZIF-8 decorated cellulose acetate mixed matrix membrane: An efficient approach for textile effluent treatment. CHEMOSPHERE 2024; 349:140836. [PMID: 38056718 DOI: 10.1016/j.chemosphere.2023.140836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
The textile industry is the second largest water-intensive industry and generates enormous wastewater. The dyes and heavy metals present in the textile effluent, even at their lower concentrations, can cause an adverse effect on the environment and human health. Recently, mixed matrix membranes have gained massive attention due to membrane property enhancement caused by incorporating nanofillers/additives in the polymer matrix. This current study examines the efficacy of ZIF-8/CA membrane on dye removal and treatment of real-time textile industry effluent. Initially, ZIF-8 nanoparticles were synthesized using a probe sonicator. The XRD, FT-IR, and SEM analysis confirmed the formation of crystalline and hexagonal facet ZIF-8 nanoparticles. The ZIF-8 nanoparticles were dispersed into a cellulose acetate matrix, and a membrane was prepared using the "phase inversion method." The membrane was characterized using FT-IR and SEM analysis, which endorse incorporating ZIF-8 into the polymer matrix. Later, the efficacy of the ZIF-8/CA membrane was verified by dye removal studies. The dye removal studies on crystal violet, acid red 13, and reactive black 5 reveal that the membrane is ∼85% efficient in dye removal, and the studies were further extended to real-time textile effluent treatment. The studies on textile effluent prevail that ZIF-8/CA membrane is also proficient in removing chemical oxygen demand (COD) ∼70%, total organic carbon (TOC) ∼80%, and heavy metals such as lead, chromium, and cadmium from textile wastewater and proved to be efficient in treating the textile effluent.
Collapse
Affiliation(s)
- Surya Teja Malkapuram
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal, TS, 506001, India
| | - Murali Mohan Seepana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal, TS, 506001, India.
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal, TS, 506001, India.
| | - Sandeep Kumar Lakhera
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamilnadu, India
| | - Edward Randviir
- Chemical Sciences, Manchester Metropolitan University, UK, M1 5GD
| |
Collapse
|
3
|
Wang K, Du X, Liu Z, Geng B, Shi W, Liu Y, Dou X, Zhu H, Pan L, Yuan X. Bismuth oxychloride nanostructure coated carbon sponge as flow-through electrode for highly efficient rocking-chair capacitive deionization. J Colloid Interface Sci 2021; 608:2752-2759. [PMID: 34785052 DOI: 10.1016/j.jcis.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Rocking-chair capacitive deionization (RCDI), as the next generation technique of capacitive deionization, has thrived to be one of the most promising strategies in the desalination community, yet was hindered mostly by its relatively low desalination rate and stability. Motivated by the goal of simultaneously enhancing the desalination rate and structural stability of the electrode, this paper reports an anion-driven flow-through RCDI (AFT-RCDI) system equipped with BiOCl nanostructure coated carbon sponge (CS@BiOCl for short; its backbone is derived from commercially available melamine foam with minimum capital cost) as the flow-through electrode. Owning to the rational design of the composite electrode material with minimum charge transfer resistance and ultrahigh structure stability as well as the superior flow-through cell architecture, the AFT-RCDI displays excellent desalination performance (desalination capacity up to 107.33 mg g-1; desalination rate up to 0.53 mg g-1s-1) with superior long-term stability (91.75% desalination capacity remained after 30 cycles). This work provides a new thought of coupling anion capturing electrode with flow-through cell architecture and employing a low-cost CS@BiOCl electrode with commercially available backbone material, which could shed light on the further development of low-cost electrochemical desalination systems.
Collapse
Affiliation(s)
- Kai Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zizhen Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Bo Geng
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Wenxue Shi
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Xinyue Dou
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Haiguang Zhu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
4
|
Patel M, Patel SS, Kumar P, Mondal DP, Singh B, Khan MA, Singh S. Advancements in spontaneous microbial desalination technology for sustainable water purification and simultaneous power generation: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113374. [PMID: 34325367 DOI: 10.1016/j.jenvman.2021.113374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Population growth and rapid urbanization have put a lot of pressure on the already scarce freshwater around the globe. The availability of freshwater is not only limited but it is non-uniform also. Available desalination technologies help mitigate water shortage; however, these techniques are energy-intensive and unsustainable. Desalination technologies utilizing renewable energy and bio-electrochemical systems have been developed to achieve limited sustainability. With technological advancements, microbial desalination cell (MDC) has been developed which is capable of desalination, wastewater treatment, and power generation simultaneously. This review critically examined the performance of various MDC techniques concerning their stimulus parameters including COD removal, total desalination rate, total dissolved solids reduction rate, Coulombic efficiency, and power density. Limitations of MDCs have also been incorporated in the review. Work on MDC coupled with other robust desalination techniques offering advantages such as better desalination and more water recovery e.g. osmotic-MDC etc. has been included. Researchers have tremendously worked on MDCs with different electro-catalysts. Few of these are not sustainable and costly. Authors have reviewed critically with belief that it will pave a way for the commercialization of this eco-friendly technology.
Collapse
Affiliation(s)
- Monika Patel
- Lightweight Metallic Materials, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Singh Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Water Resources Management and Rural Technology, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India
| | - Pradip Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Integrated Approach for Design and Product Development, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India.
| | - Dehi Pada Mondal
- Lightweight Metallic Materials, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhupendra Singh
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Minhsiung Township, Chiayi County, 62102, Taiwan
| | - Mohd Akram Khan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Industrial Waste Utilization, Nano and Biomaterials, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India
| | - Shiv Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Industrial Waste Utilization, Nano and Biomaterials, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India.
| |
Collapse
|
5
|
Desalination of brackish water using a microbial desalination cell: Analysis of the electrochemical behaviour. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Rahman S, Al-Mamun A, Jafary T, Alhimali H, Baawain MS. Effect of internal and external resistances on desalination in microbial desalination cell. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2389-2403. [PMID: 34032617 DOI: 10.2166/wst.2021.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The green and cost-effective nature of the microbial desalination cell (MDC) make it a promising alternative for future sustainable desalination. However, MDC suffers from a low desalination rate that inhibits it being commercialized. External resistance (Rext) is one of the factors that significantly affect the desalination rate in MDCs, which is still under debate. This research, for the first time, investigated the impact of Rext on MDCs with different internal resistance (Rint) of the system to discover the optimal range of Rext for efficient MDC performance. The results showed that the effect of Rext on desalination rate (2.52 mg/h) was quite low when the Rint of MDC was high (200 Ω). However, operating the MDC with a low Rint (67 Ω) significantly improved the desalination rate (9.85 mg/h) and current generation. When MDC was operated with a low Rint the effect of variable Rext on desalination and current generation was noticeable. Therefore, low Rint (67 Ω) MDC was used to select the optimum Rext when the optimal range was found to be Rext ≪ Rint, Rext < Rint, Rext ≈ Rint (ranging from 1-69 Ω) to achieve the highest desalination rates (10.41-8.59 mg/h). The results showed the superior effect of Rint on desalination rate before selecting the optimal range of Rext in the outer circuit.
Collapse
Affiliation(s)
- Sadik Rahman
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Sultanate of Oman E-mail: ;
| | - Abdullah Al-Mamun
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Sultanate of Oman E-mail: ;
| | - Tahereh Jafary
- Process Engineering Department, International Maritime College, Sohar, Sultanate of Oman
| | - Halima Alhimali
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Sultanate of Oman E-mail: ;
| | | |
Collapse
|
7
|
Salehmin MNI, Lim SS, Satar I, Daud WRW. Pushing microbial desalination cells towards field application: Prevailing challenges, potential mitigation strategies, and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143485. [PMID: 33279184 DOI: 10.1016/j.scitotenv.2020.143485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Microbial desalination cells (MDCs) have been experimentally proven as a versatile bioelectrochemical system (BES). They have the potential to alleviate environmental pollution, reduce water scarcity and save energy and operational costs. However, MDCs alone are inadequate to realise a complete wastewater and desalination treatment at a high-efficiency performance. The assembly of identical MDC units that hydraulically and electrically connected can improve the performance better than standalone MDCs. In the same manner, the coupling of MDCs with other BES or conventional water reclamation technology has also exhibits a promising performance. However, the scaling-up effort has been slowly progressing, leading to a lack of knowledge for guiding MDC technology into practicality. Many challenges remain unsolved and should be mitigated before MDCs can be fully implemented in real applications. Here, we aim to provide a comprehensive chronological-based review that covers technological limitations and mitigation strategies, which have been developed for standalone MDCs. We extend our discussion on how assembled, coupled and scaled-up MDCs have improved in comparison with standalone and lab-scale MDC systems. This review also outlines the prevailing challenges and potential mitigation strategies for scaling-up based on large-scale specifications and evaluates the prospects of selected MDC systems to be integrated with conventional anaerobic digestion (AD) and reverse osmosis (RO). This review offers several recommendations to promote up-scaling studies guided by the pilot scale BES and existing water reclamation technologies.
Collapse
Affiliation(s)
| | - Swee Su Lim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ibdal Satar
- Department of Food Technology, Faculty of Industrial Technology, Universitas Ahmad Dahlan (UAD), 55166 Umbulharjo, Yogyakarta, Indonesia
| | - Wan Ramli Wan Daud
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
8
|
Zhang H, Guo Y, Zhang X, Hu X, Wang C, Yang Y. Preparation and characterization of PSF-TiO2 hybrid hollow fiber UF membrane by sol–gel method. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02313-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
10
|
Liu F, Moustafa H, El-Din Hassouna MS, He Z. Resource recovery from wastewater can be an application niche of microbial desalination cells. ENVIRONMENT INTERNATIONAL 2020; 142:105855. [PMID: 32559559 DOI: 10.1016/j.envint.2020.105855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Microbial desalination cells (MDCs) have been studied as an emerging technology to accomplish simultaneous wastewater treatment and saline water desalination. A good amount of effort has been invested to understand fundamental problems and develop functional systems of the MDC technology. However, a revisit of MDCs' desalination function reveals that the unique requirements like co-location of wastewater and saline water will greatly limit the application of this technology. In addition, the relatively low desalination rate of MDCs will result in a large reactor size and thus higher capital cost. Because of the need for wastewater (as a substrate for electricity generation), the MDC technology may have a promising niche of application for resource recovery from wastewater. A proper design of MDCs will allow the current-driven separation of ammonia, phosphorus, and volatile fatty acids (VFAs) from wastewater for further recovery. Based on the literature data, we conduct a case study analysis of mass flow for MDC-based resource recovery and demonstrate the potential of this function. Resource recovery can be a new function of interest to MDCs and worth further exploration of its technical and economic feasibility.
Collapse
Affiliation(s)
- Fubin Liu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hanan Moustafa
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | | | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
11
|
Perazzoli S, de Santana Neto JP, Soares HM. Anoxic-biocathode microbial desalination cell as a new approach for wastewater remediation and clean water production. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:550-563. [PMID: 32385209 DOI: 10.2166/wst.2020.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioelectrochemical systems are emerging as a promising and friendly alternative to convert the energy stored in wastewater directly into electricity by microorganisms and utilize it in situ to drive desalination. To better understand such processes, we propose the development of an anoxic biocathode microbial desalination Cell for the conversion of carbon- and nitrogen-rich wastewaters into bioenergy and to perform salt removal. Our results demonstrate a power output of 0.425 W m-3 with desalination, organic matter removal and nitrate conversion efficiencies of 43.69, 99.85 and 92.11% respectively. Microbiological analysis revealed Proteobacteria as the dominant phylum in the anode (88.45%) and biocathode (97.13%). While a relatively higher bacterial abundance was developed in the anode chamber, the biocathode showed a greater variety of microorganisms, with a predominance of Paracoccus (73.2%), which are related to the denitrification process. These findings are promising and provide new opportunities for the development and application of this technology in the field of wastewater treatment to produce cleaner water and conserve natural resources.
Collapse
Affiliation(s)
- Simone Perazzoli
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil E-mail:
| | - José Pedro de Santana Neto
- Department of Mechanical Engineering, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Hugo M Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil E-mail:
| |
Collapse
|
12
|
Liu F, Luo S, Wang H, Zuo K, Wang L, Zhang X, Liang P, Huang X. Improving wastewater treatment capacity by optimizing hydraulic retention time of dual-anode assembled microbial desalination cell system. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Zhang L, Fu G, Zhang Z. High-efficiency salt, sulfate and nitrogen removal and microbial community in biocathode microbial desalination cell for mustard tuber wastewater treatment. BIORESOURCE TECHNOLOGY 2019; 289:121630. [PMID: 31252315 DOI: 10.1016/j.biortech.2019.121630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Considering there is no study involving simultaneous salt, sulfate and nitrogen removal from high-salinity mustard tuber wastewater (MTWW), biocathode microbial desalination cell (BMDC) was first constructed and used to treat MTWW. The results showed that 97.4% of salt, 99.7% of sulfate and 99.8% of nitrogen could be removed from MTWW. The relative abundances of electrgenic bacteria in anode and cathode were 15.95% and 15.10%, respectively, which greatly promoted the electricity generation and desalination. The bacteria involved in sulfate reduction in anode were the dominant population, with relative abundance of 13.94%. Microbial community analysis of cathode biofilm indicated that autotrophic nitrification-anaerobic denitrification, electrochemical reduction and anaerobic ammonium oxidation might coexist for high-efficiency nitrogen removal. Besides, the BMDC showed stable power output for 150 days. These findings provide a promising approach for efficient treatment of MTWW.
Collapse
Affiliation(s)
- Linfang Zhang
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Guokai Fu
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Zhi Zhang
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
14
|
Ouyang W, Chen T, Shi Y, Tong L, Chen Y, Wang W, Yang J, Xue J. Physico-chemical processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1350-1377. [PMID: 31529571 DOI: 10.1002/wer.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The review scans research articles published in 2018 on physico-chemical processes for water and wastewater treatment. The paper includes eight sections, that is, membrane technology, granular filtration, flotation, adsorption, coagulation/flocculation, capacitive deionization, ion exchange, and oxidation. The membrane technology section further divides into six parts, including microfiltration, ultrafiltration, nanofiltration, reverse osmosis/forward osmosis, and membrane distillation. PRACTITIONER POINTS: Totally 266 articles on water and wastewater treatment have been scanned; The review is sectioned into 8 major parts; Membrane technology has drawn the widest attention from the research community.
Collapse
Affiliation(s)
- Weihang Ouyang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Tianhao Chen
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yihao Shi
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Liangyu Tong
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yangyu Chen
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Weiwen Wang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jiajun Yang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jinkai Xue
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Environmental Systems Engineering, University of Regina, Saskatchewan, Canada
| |
Collapse
|
15
|
|
16
|
Liu F, Wang L, Zuo K, Luo S, Zhang X, Liang P, Huang X. A novel operational strategy to enhance wastewater treatment with dual-anode assembled microbial desalination cell. Bioelectrochemistry 2019; 126:99-104. [DOI: 10.1016/j.bioelechem.2018.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 10/27/2022]
|
17
|
Bakonyi P, Koók L, Kumar G, Tóth G, Rózsenberszki T, Nguyen DD, Chang SW, Zhen G, Bélafi-Bakó K, Nemestóthy N. Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: A comprehensive update on recent progress and future prospects. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|