1
|
Katare A, Sikha S, Mandal B. Synergistic enhancement of CO 2/N 2 separation performance via Ce-MOF-infused chitosan mixed matrix membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33061-y. [PMID: 38561537 DOI: 10.1007/s11356-024-33061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Reticular chemistry, exemplified by metal-organic frameworks (MOFs), has proven invaluable in creating porous materials with finely tuned structures to address critical global energy and environmental challenges. In this context, the need for efficient carbon dioxide (CO2) capture and utilization has taken center stage. One promising approach involves the integration of MOFs into polymer matrix to develop mixed matrix membranes (MMMs). In this work, cerium-based MOFs (Ce-MOF) were selected due to their robust CO2 capture capabilities, while chitosan (CS) was chosen as the polymer matrix due to its reasonably good selectivity and balanced CO2 permeance for the development of MMMs for CO2/N2 (20/80 vol%) separation. A comprehensive suite of analytical techniques, including FTIR, XRD, FESEM, XPS, TGA, EDX, FETEM, and BET, was applied for precise characterization of both the MOF and MMMs. Various operational parameters, such as Ce-MOF content and temperature, were systematically explored to investigate the CO2 capture efficiency of the synthesized MMMs. The results revealed that the optimized Ce-MOF-embedded CS MMMs consistently outperformed the bare CS membranes.
Collapse
Affiliation(s)
- Aviti Katare
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sikha Sikha
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Bishnupada Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Katare A, Borgohain R, Prasad B, Mandal B. A Strategical Improvement in the Performance of CO 2/N 2 Gas Permeation via Conjugation of L-Tyrosine onto Chitosan Membrane. MEMBRANES 2023; 13:membranes13050487. [PMID: 37233548 DOI: 10.3390/membranes13050487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Rubbery polymeric membranes, containing amine carriers, have received much attention in CO2 separation because of their easy fabrication, low cost, and excellent separation performance. The present study focuses on the versatile aspects of covalent conjugation of L-tyrosine (Tyr) onto the high molecular weight chitosan (CS) accomplished by using carbodiimide as a coupling agent for CO2/N2 separation. The fabricated membrane was subjected to FTIR, XRD, TGA, AFM, FESEM, and moisture retention tests to examine the thermal and physicochemical properties. The defect-free dense layer of tyrosine-conjugated-chitosan, with active layer thickness within the range of ~600 nm, was cast and employed for mixed gas (CO2/N2) separation study in the temperature range of 25-115 °C in both dry and swollen conditions and compared to that of a neat CS membrane. An enhancement in the thermal stability and amorphousness was displayed by TGA and XRD spectra, respectively, for the prepared membranes. The fabricated membrane showed reasonably good CO2 permeance of around 103 GPU and CO2/N2 selectivity of 32 by maintaining a sweep/feed moisture flow rate of 0.05/0.03 mL/min, respectively, an operating temperature of 85 °C, and a feed pressure of 32 psi. The composite membrane demonstrated high permeance because of the chemical grafting compared to the bare chitosan. Additionally, the excellent moisture retention capacity of the fabricated membrane accelerates high CO2 uptake by amine carriers, owing to the reversible zwitterion reaction. All the features make this membrane a potential membrane material for CO2 capture.
Collapse
Affiliation(s)
- Aviti Katare
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Rajashree Borgohain
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Babul Prasad
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210-1350, USA
| | - Bishnupada Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
3
|
Gao L, Li P, Li H, Fang Y, Lin Y, Zhan Z, Xu Z. Crosslinked
PMIA
ultrafiltration membrane with enhanced permeability via incorporating
TMC
monomer. J Appl Polym Sci 2022. [DOI: 10.1002/app.53235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ling‐Lin Gao
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Ping‐Ping Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Hua‐Xiang Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Yin‐Xin Fang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Yu‐Fei Lin
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Zi‐Ming Zhan
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Zhen‐Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
4
|
Yaashikaa PR, Senthil Kumar P, Karishma S. Review on biopolymers and composites - Evolving material as adsorbents in removal of environmental pollutants. ENVIRONMENTAL RESEARCH 2022; 212:113114. [PMID: 35331699 DOI: 10.1016/j.envres.2022.113114] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The presence of pollutants and toxic contaminants in water sources makes it unfit to run through. Though various conventional techniques are on deck, development of new technologies are vital for wastewater treatment and recycling. Polymers have been intensively utilized recently in many industries owing to their unique characteristics. Biopolymers resembles natural alternative to synthetic polymers that can be prepared by linking the monomeric units covalently. Despite the obvious advantages of biopolymers, few reviews have been conducted. This review focuses on biopolymers and composites as suitable adsorbent material for removing pollutants present in environment. The classification of biopolymers and their composites based on the sources, methods of preparation and their potential applications are discussed in detail. Biopolymers have the potentiality of substituting conventional adsorbents due to its unique characteristics. Biopolymer based membranes and effective methods of utilization of biopolymers as suitable adsorbent materials are also briefly elaborated. The mechanism of biopolymers and their membrane-based adsorption has been briefly reviewed. In addition, the methods of regeneration and reuse of used biopolymer based adsorbents are highlighted. The comprehensive content on fate of biopolymer after adsorption is given in brief. Finally, this review concludes the future investigations in recent trends in application of biopolymer in various fields in view of eco-friendly and economic perspectives.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
5
|
Torre-Celeizabal A, Casado-Coterillo C, Garea A. Biopolymer-Based Mixed Matrix Membranes (MMMs) for CO2/CH4 Separation: Experimental and Modeling Evaluation. MEMBRANES 2022; 12:membranes12060561. [PMID: 35736267 PMCID: PMC9230895 DOI: 10.3390/membranes12060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Alternative materials are needed to tackle the sustainability of membrane fabrication in light of the circular economy, so that membrane technology keeps playing a role as sustainable technology in CO2 separation processes. In this work, chitosan (CS)-based mixed matrix thin layers have been coated onto commercial polyethersulfone (PES) supports. The CS matrix was loaded by non-toxic 1-Ethyl-3-methylimidazolium acetate ionic liquid (IL) and/or laminar nanoporous AM-4 and UZAR-S3 silicates prepared without costly organic surfactants to improve CO2 permselectivity and mechanical robustness. The CO2/CH4 separation behavior of these membranes was evaluated experimentally at different feed gas composition (CO2/CH4 feed mixture from 20:80 to 70:30%), covering different separation applications associated with this separation. A cross-flow membrane cell model built using Aspen Custom Modeler was used to validate the process performance and relate the membrane properties with the target objectives of CO2 and CH4 recovery and purity in the permeate and retentate streams, respectively. The purely organic IL-CS and mixed matrix AM-4:IL-CS composite membranes showed the most promising results in terms of CO2 and CH4 purity and recovery. This is correlated with their higher hydrophilicity and CO2 adsorption and lower swelling degree, i.e., mechanical robustness, than UZAR-S3 loaded composite membranes. The purity and recovery of the 10 wt.% AM-4:IL-CS/PES composite membrane were close or even surpassed those of the hydrophobic commercial membrane used as reference. This work provides scope for membranes fabricated from renewable or biodegradable polymers and non-toxic fillers that show at least comparable CO2/CH4 separation as existing membranes, as well as the simultaneous feedback on membrane development by the simultaneous correlation of the process requirements with the membrane properties to achieve those process targets.
Collapse
|
6
|
Vatanpour V, Yavuzturk Gul B, Zeytuncu B, Korkut S, İlyasoğlu G, Turken T, Badawi M, Koyuncu I, Saeb MR. Polysaccharides in fabrication of membranes: A review. Carbohydr Polym 2022; 281:119041. [DOI: 10.1016/j.carbpol.2021.119041] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
|
7
|
Yogarathinam LT, Goh PS, Ismail AF, Gangasalam A, Ahmad NA, Samavati A, Mamah SC, Zainol Abidin MN, Ng BC, Gopal B. Nanocrystalline cellulose incorporated biopolymer tailored polyethersulfone mixed matrix membranes for efficient treatment of produced water. CHEMOSPHERE 2022; 293:133561. [PMID: 35031248 DOI: 10.1016/j.chemosphere.2022.133561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Membrane technology is a sustainable method to remove pollutants from petroleum wastewater. However, the presence of hydrophobic oil molecules and inorganic constituents can cause membrane fouling. Biomass derived biopolymers are promising renewable materials for membrane modification. In this study, fouling resistant biopolymer N-phthaloylchitosan (CS)- based polythersulfone (PES) mixed matrix membranes (MMMs) incorporated with nanocrystalline cellulose (NCC) was fabricated via phase inversion method and applied for produced water (PW) treatment. The morphological and Fourier-transform infrared spectroscopy (FTIR) analyses of the as-prepared NCC evidenced the formation of fibrous sheet-like structure and the presence of hydrophilic group. The membrane morphology and AFM analysis showed that the NCC altered the surface and cross-sectional morphology of the CS-PES MMMs. The tensile strength of NCC-CS-PES MMMs was also enhanced. 0.5 wt% NCC-CS-PES MMMs displayed a water permeability of 1.11 × 10-7 m/s.kPa with the lowest contact angle value of 61°. It affirmed that its hydrophilicity increased through the synergetic interaction between CS biopolymer and NCC. The effect of process variables such as transmembrane pressure (TMP) and synthetic produced water (PW) concentration were evaluated for both neat PES and NCC-CS-PES MMMs membranes. 0.5 wt% NCC-CS-PES MMMs exhibited the highest PW rejection of 98% when treating 50 mgL-1 of synthetic PW at a transmembrane pressure (TMP) of 200 kPa. The effect of nano silica and sodium chloride on the long-term PW filtration of NCC-CS-PES MMMs was also investigated.
Collapse
Affiliation(s)
- Lukka Thuyavan Yogarathinam
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Arthanareeswaran Gangasalam
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India.
| | - Nor Akalili Ahmad
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Alireza Samavati
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Stanley Chinedu Mamah
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Muhammad Nidzhom Zainol Abidin
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Balamurugan Gopal
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
8
|
Wang Z, Tian T, Xu K, Jia Y, Zhang C, Li J, Wang Z. Removal of antimony(III) by magnetic MIL-101(Cr)-NH2 loaded with SiO2: optimization based on response surface methodology and adsorption properties. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02069-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Barooah M, Mandal B, Su B. Enhanced
CO
2
separation performance of mixed matrix membrane by incorporating amine‐functionalized silica filler. J Appl Polym Sci 2021. [DOI: 10.1002/app.51438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mridusmita Barooah
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati Assam India
| | - Bishnupada Mandal
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati Assam India
| | - Baowei Su
- Key Laboratory of Marine Chemistry Theory and Technology Ocean University of China, Ministry of Education Qingdao China
| |
Collapse
|
10
|
Borgohain R, Pattnaik U, Prasad B, Mandal B. A review on chitosan-based membranes for sustainable CO 2 separation applications: Mechanism, issues, and the way forward. Carbohydr Polym 2021; 267:118178. [PMID: 34119146 DOI: 10.1016/j.carbpol.2021.118178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/26/2021] [Accepted: 04/30/2021] [Indexed: 02/03/2023]
Abstract
Effective carbon dioxide (CO2) separation by nominal energy utilization is the factual attempt in the present era of energy scarcity and environmental calamity. In this perspective, the membrane- based gas separation technology is a budding endeavour owing to its cost -effectiveness, ease of operational maintenance and compact modular design. Among various membrane materials, bio-based polymers are of interest as they are abundant and can be obtained from renewable resources, and can also reduce our dependency on exhaustible fossil fuel-based sources. In this review, the structure-property relationship of chitosan and some of its film-forming derivatives has been critically studied for the first time in view of the fundamental properties required for gas separation applications. Various factors affecting the gas permeation performance of chitosan-based membranes have been highlighted along with prospects and propositions for the design of a few novel bio-based membranes based on the exhaustive analyses.
Collapse
Affiliation(s)
- Rajashree Borgohain
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, 781039, India
| | - Upamanyu Pattnaik
- Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, 620015, India
| | - Babul Prasad
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210-1350, USA
| | - Bishnupada Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, 781039, India.
| |
Collapse
|
11
|
|
12
|
Yang Y, Ge L. Sensor coating employed to preliminarily evaluate the banana ripeness. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
|
14
|
CO 2 Separation with Polymer/Aniline Composite Membranes. Polymers (Basel) 2020; 12:polym12061363. [PMID: 32560469 PMCID: PMC7362012 DOI: 10.3390/polym12061363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
Polymer composite membranes containing aniline were prepared for CO2/N2 separation. Aniline was selected for high separation performance as an additive containing both the benzene ring to interfere with gas transport and an amino group that could induce the accelerated transport of CO2 molecules. As a result, when aniline having both a benzene ring and an amino group was incorporated into polymer membranes, the selectivity was largely enhanced by the role of both gas barriers and CO2 carriers. Selective layers coated on the polysulfone were identified by scanning electron microscopy (SEM) images and the interaction with aniline in the polymer matrix was confirmed by FT-IR spectroscopy. The binding energy of oxygen in the polymer matrix was investigated by XPS, and the thermal stability of the composite membrane was confirmed by TGA.
Collapse
|
15
|
Yan Z, Zhang M, Shi F, Zhu B, Liu M, Wang S, Li Y, Nunes SP. Enhanced CO2 separation in membranes with anion-cation dual pathways. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Tseng IH, Liu ZC, Chang PY. Bio-friendly titania-grafted chitosan film with biomimetic surface structure for photocatalytic application. Carbohydr Polym 2020; 230:115584. [DOI: 10.1016/j.carbpol.2019.115584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/30/2022]
|
17
|
Park CH, Lee JH, Kim NU, Kong CI, Kim JH, Kim JH. Solid-state facilitated transport of carbon monoxide through mixed matrix membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Borgohain R, Mandal B. pH Responsive Carboxymethyl Chitosan/Poly(amidoamine) Molecular Gate Membrane for CO 2/N 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42616-42628. [PMID: 31633903 DOI: 10.1021/acsami.9b15044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Efficient carbon dioxide separation is an emerging field of interest in the era of energy scarcity and environmental calamity. The present study focuses on the versatile aspects of carboxymethyl chitosan and dendrimer in terms of CO2 separation. A comprehensive study has been accomplished to inspect the physicochemical properties of the prepared membrane. The mixed gas (CO2/N2) separation performances have been measured varying the temperature (60-110 °C) and sweep/feedwater flow ratio (0.33-3). The blend membrane containing 10 weight (wt.)% dendrimer presented highest CO2 permeance of ∼100 GPU and CO2/N2 selectivity ∼149 on maintenance of sweep/feedwater flow ratio 2.33 and 1.67, respectively, at an operating temperature of 90 °C. The remarkable performance displayed by the membrane has been explained with reference to the dendrimer molecular gate mechanism and the salting out effect offered by carboxymethyl chitosan matrix.
Collapse
Affiliation(s)
- Rajashree Borgohain
- Department of Chemical Engineering , Indian Institute of Technology , Guwahati India , 781039
| | - Bishnupada Mandal
- Department of Chemical Engineering , Indian Institute of Technology , Guwahati India , 781039
| |
Collapse
|
19
|
Borgohain R, Mandal B. High‐speed CO
2
transport channel containing carboxymethyl chitosan/hydrotalcite membrane for CO
2
separation. J Appl Polym Sci 2019. [DOI: 10.1002/app.48715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rajashree Borgohain
- Department of Chemical EngineeringIndian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Bishnupada Mandal
- Department of Chemical EngineeringIndian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|
20
|
|
21
|
|
22
|
Barooah M, Mandal B. Synthesis, characterization and CO2 separation performance of novel PVA/PG/ZIF-8 mixed matrix membrane. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Preparation and characterization of CO2-selective facilitated transport membrane composed of chitosan and poly(allylamine) blend for CO2/N2 separation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Prasad B, Mandal B. Graphene-Incorporated Biopolymeric Mixed-Matrix Membrane for Enhanced CO 2 Separation by Regulating the Support Pore Filling. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27810-27820. [PMID: 30059202 DOI: 10.1021/acsami.8b09377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The CO2 separation performance by a membrane is influenced essentially by film thickness, temperature, moisture, and pressure. Pore formation on the active layer and pore clogging of the membrane support are critical factors that impedes the CO2 separation performance. This study involves the development of a novel nanocomposite membrane (CS/SF/GNP) consisting of chitosan (CS), silk fibroin (SF), and graphene nanoparticles (GNP). The CS acts as the matrix, SF contributes to the CO2 facilitated transport by its inherent amines as carriers, and GNP helped in counteracting the support pore blockage during the gas separation test. The positive effect of GNP in the CS/SF/GNP was further apparent in the CO2 permeance inconsequential drop of ∼7% during the initial 12 h in the presence of moisture and pressure. The detailed characterizations including FESEM, AFM, and swelling were performed for the membranes. The effect of sweep water flow rate, temperature, and feed absolute pressure on CO2 separation performance from binary gas were performed. The CS/SF/GNP membrane exhibited CO2 permeance of 159 GPU and CO2/N2 selectivity of 93 at 90 °C and a feed absolute pressure of 2 bar having a sweep side water flow rate of 0.05 mL/min. Further, when CS/SF/GNP membrane was tested to separate CO2 from ternary gas mixture (CO2/N2/H2), it displayed excellent CO2 permeance of 126 GPU and selectivity for CO2/N2 and CO2/H2 as 104 and 52, respectively. The TGA isotherm and XPS analysis of CS/SF/GNP membrane suggested a thermal stability of the prepared membrane that establishes its suitability for the gas permeation at different temperature.
Collapse
Affiliation(s)
- Babul Prasad
- Department of Chemical Engineering , Indian Institute of Technology Guwahati , Guwahati , 781039 Assam , India
| | - Bishnupada Mandal
- Department of Chemical Engineering , Indian Institute of Technology Guwahati , Guwahati , 781039 Assam , India
| |
Collapse
|
25
|
Barooah M, Mandal B. Enhanced CO2
separation performance by PVA/PEG/silica mixed matrix membrane. J Appl Polym Sci 2018. [DOI: 10.1002/app.46481] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mridusmita Barooah
- Department of Chemical Engineering; Indian Institute of Technology Guwahati; Guwahati Assam 781039 India
| | - Bishnupada Mandal
- Department of Chemical Engineering; Indian Institute of Technology Guwahati; Guwahati Assam 781039 India
| |
Collapse
|