1
|
Huang Y, Wu L, Chang L, Peng W, Wang W, Cao Y. Sodium alginate-crosslinked montmorillonite nanosheets hydrogel for efficient gallium recovery. Int J Biol Macromol 2025; 295:139474. [PMID: 39778854 DOI: 10.1016/j.ijbiomac.2025.139474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
An efficient adsorbent for Ga(III) recovery was developed by applying the geochemical principles of Ga mineralization, using Al-rich clay minerals with a natural affinity for Ga as the raw material. Sodium alginate (SA) facilitated the cross-linked assembly of montmorillonite nanosheets (MMTNS), forming a three-dimensional structured hydrogel. This was achieved through electrostatic interactions between -OH groups on the edges of MMTNS and -COO- groups in SA, as well as the complexation of Ca2+ and -COO- groups. The resulting hydrogel maintained a porous structure while preserving the layered arrangement of MMTNS, significantly enhancing the adsorption capacity for Ga(III). Thermodynamic analysis revealed that Ga(III) adsorption was both endothermic and spontaneous. The Elovich model indicated that heterogeneous chemisorption dominated the adsorption process. Ga(III) adsorption followed the Langmuir isotherm model, indicating that it was controlled by specific binding sites and occurred via uniform monolayer adsorption, with a maximum capacity of 85.95 mg/g. The adsorption mechanism involved ion exchange interactions, chelation of functional groups, and electrostatic interactions. After 4 cycles, the hydrogel retained an adsorption capacity of 65.4 mg/g. Additionally, the hydrogel demonstrated good selectivity for Ga(III) in a quaternary ion solution system. This hydrogel shows significant potential as a candidate for Ga(III) recovery.
Collapse
Affiliation(s)
- Yan Huang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Luoyang Industrial Technology Institute, Luoyang, Henan 471132, PR China
| | - Liming Wu
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Luoyang Industrial Technology Institute, Luoyang, Henan 471132, PR China
| | - Lin Chang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Luoyang Industrial Technology Institute, Luoyang, Henan 471132, PR China
| | - Weijun Peng
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Luoyang Industrial Technology Institute, Luoyang, Henan 471132, PR China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou, Henan 450001, PR China
| | - Wei Wang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Luoyang Industrial Technology Institute, Luoyang, Henan 471132, PR China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou, Henan 450001, PR China.
| | - Yijun Cao
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Luoyang Industrial Technology Institute, Luoyang, Henan 471132, PR China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
2
|
Zhang Y, Zhang G, Li B, Wu L. Non-Stop Switching Separation of Superfine Solid/Liquid Dispersed Phases in Oil and Water Systems Using Polymer-Assisted Framework Fiber Membranes. SMALL METHODS 2023; 7:e2201455. [PMID: 36908003 DOI: 10.1002/smtd.202201455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Indexed: 06/09/2023]
Abstract
Fabricating filtration membranes with wide applicability and high efficiency is always a challenge in the precise separation of small colloidal particles under mild conditions. For this purpose, a strategy mixing supramolecular framework fiber with polymer is adopted. The fibrous assembly in the gel state provides uniform nanopores for both channel and interception and controlled wettability for lyophilic/lyophobic switching. The used polymer fills the gaps between fiber assemblies and improves the mechanical property. The composite membrane shows both under-oil superhydrophobic and underwater superoleophobic nature, which allows the conversions via in situ modulation of joystick solvents. Based on surface wetting and size-sieving, ultrafine hard nanoparticles dispersing in both hydrophobic organic solvents and water are selectively sieved. In addition, on-demand separation of water-in-oil and oil-in-water microemulsions without and with surfactants as systems containing soft droplets are realized. The smallest cut-off size of ≈3 nm is achieved for both hard and soft emulsions, while separation efficiency maintains during sustained in situ reversible switches.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Guohua Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
3
|
Constructing A Janus membrane with extremely asymmetric wettability for water unidirectional permeation and switchable emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Feng Q, Zhan Y, Yang W, Dong H, Sun A, Li L, Chen X, Chen Y. Ultra-high flux and synergistically enhanced anti-fouling Ag@MXene lamellar membrane for the fast purification of oily wastewater through nano-intercalation, photocatalytic self-cleaning and antibacterial effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Jin Y, Huang L, Zheng K, Zhou S. Blending Electrostatic Spinning Fabrication of Superhydrophilic/Underwater Superoleophobic Polysulfonamide/Polyvinylpyrrolidone Nanofibrous Membranes for Efficient Oil-Water Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8241-8251. [PMID: 35772102 DOI: 10.1021/acs.langmuir.2c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The scarcity of water resources has led to widespread interest in the treatment of oily wastewater. This study prepared a novel superhydrophilic/underwater superoleophobic polysulfonamide (PSA)/polyvinylpyrrolidone (PVP) nanofibrous membrane through electrostatic spinning for efficient oil-water emulsion separation. The surface morphology, fiber diameter distribution, wettability properties, and oil-water emulsion separation performance of the membranes were investigated. Results showed that the addition of PVP increases the diameter of the fibers, which led to a loose, large, porous structure and improved the permeability of the membranes. A high pure-water flux of 2057 L·m-2·h-1 was obtained for membranes with PVP addition of 3 wt%, providing an 835% increase in pure-water flux compared with a pure PSA nanofibrous membrane (220 L·m-2·h-1). For n-hexane-in-water emulsions, the optimum membrane obtained a high separation efficiency of 99.7%, in which flux was 1.5 times greater than that of the pure PSA nanofibrous membrane. Moreover, the optimum membrane exhibited good recycling stability and solvent resistance. The as-prepared PSA/PVP nanofibrous membrane displayed high permeability, an outstanding rejection rate, resistance to organic solvents, and reusability for oil-water separation, providing great potential in practical membrane separation applications.
Collapse
Affiliation(s)
- Yuting Jin
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| | - Longwei Huang
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| | - Ke Zheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, China
| | - Shaoqi Zhou
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
6
|
He H, Liu Y, Zhu Y, Zhang TC, Yuan S. Underoil superhydrophilic CuC2O4@Cu-MOFs core-shell nanosheets-coated copper mesh membrane for on-demand emulsion separation and simultaneous removal of soluble dye. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Malik N, Bulasara VK, Basu S. Surfactant induced ultrafiltration of heavy metal ions from aqueous solutions using a hybrid polymer–ceramic composite membrane. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Jiang H, Wang P, Zhao Q, Wang Z, Sun X, Chen M, Han B, Ma J. Enhanced water permeance and antifouling performance of gravity-driven ultrafiltration membrane with in-situ formed rigid pore structure. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Nature-inspired green method decorated MXene-based composite membrane for high-efficiency oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
|
11
|
Ong CS, Lay HT, Tamilselvam NR, Chew JW. Cross-Linked Polycarbonate Microfiltration Membranes with Improved Solvent Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4025-4032. [PMID: 33759528 DOI: 10.1021/acs.langmuir.1c00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we report a facile preparation of an organic solvent-resistant membrane through the formation of urethane bonds between polycarbonate and polyethyleneimine groups. The modified membrane was further cross-linked with 1,4-butanediol diglycidyl ether (BDG) to enhance its solvent resistance as well as its thermal and mechanical stability. The cross-linked polycarbonate membranes exhibited improved solvent resistance with various organic solvents, giving a maximum swelling degree of 6%. It also showed better mechanical and thermal stability, as well as excellent permeance and rejection performance. This study demonstrates BDG as an attractive cross-linker for polycarbonate microfiltration membranes to transform them toward organic solvent filtration applications.
Collapse
Affiliation(s)
- Chi Siang Ong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Huang Teik Lay
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
- Singapore Membrane Technology Centre, Nanyang Environmental and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Navin Raj Tamilselvam
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
- Singapore Membrane Technology Centre, Nanyang Environmental and Water Research Institute, Nanyang Technological University, 637141, Singapore
| |
Collapse
|
12
|
Chew JW, Kilduff J, Belfort G. The behavior of suspensions and macromolecular solutions in crossflow microfiltration: An update. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117865] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Huang CH, Liu YL. Self-crosslinkable polymers from furan-functionalized Meldrum's acid and maleimides as effective precursors of free-standing and flexible crosslinked polymer films showing low dielectric constants. Polym Chem 2020. [DOI: 10.1039/c9py01709g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of Michael addition and Diels–Alder reaction in the synthesis of reactive polymers for self-standing and flexible crosslinked polymer films.
Collapse
Affiliation(s)
- Chien-Ho Huang
- Department of Chemical Engineering
- National Tsing Hua University
- 30013 Hsinchu
- Taiwan
| | - Ying-Ling Liu
- Department of Chemical Engineering
- National Tsing Hua University
- 30013 Hsinchu
- Taiwan
| |
Collapse
|
14
|
Faraji M, Nabavi SR, Salimi-Kenari H. Fabrication of a PAN–PA6/PANI membrane using dual spinneret electrospinning followed by in situ polymerization for separation of oil-in-water emulsions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03231j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A polyacrylonitrile–polyamide 6/polyaniline (PAN–PA6/PANI) doped membrane was prepared using dual spinneret simultaneous electrospinning of PAN and PA6 and in situ polymerization of aniline at low temperature.
Collapse
Affiliation(s)
- Mehdi Faraji
- Department of Applied Chemistry
- Faculty of Chemistry
- University of Mazandaran
- Babolsar
- Iran
| | - Seyed Reza Nabavi
- Department of Applied Chemistry
- Faculty of Chemistry
- University of Mazandaran
- Babolsar
- Iran
| | - Hamed Salimi-Kenari
- Department of Chemical Engineering
- Faculty of Engineering
- University of Mazandaran
- Babolsar
- Iran
| |
Collapse
|
15
|
Yao H, Lu X, Xin Z, Zhang H, Li X. A durable bio-based polybenzoxazine/SiO2 modified fabric with superhydrophobicity and superoleophilicity for oil/water separation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Ouyang W, Chen T, Shi Y, Tong L, Chen Y, Wang W, Yang J, Xue J. Physico-chemical processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1350-1377. [PMID: 31529571 DOI: 10.1002/wer.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The review scans research articles published in 2018 on physico-chemical processes for water and wastewater treatment. The paper includes eight sections, that is, membrane technology, granular filtration, flotation, adsorption, coagulation/flocculation, capacitive deionization, ion exchange, and oxidation. The membrane technology section further divides into six parts, including microfiltration, ultrafiltration, nanofiltration, reverse osmosis/forward osmosis, and membrane distillation. PRACTITIONER POINTS: Totally 266 articles on water and wastewater treatment have been scanned; The review is sectioned into 8 major parts; Membrane technology has drawn the widest attention from the research community.
Collapse
Affiliation(s)
- Weihang Ouyang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Tianhao Chen
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yihao Shi
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Liangyu Tong
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yangyu Chen
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Weiwen Wang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jiajun Yang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jinkai Xue
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Environmental Systems Engineering, University of Regina, Saskatchewan, Canada
| |
Collapse
|
17
|
Liu Z, Wei Z, Long S, Wang X, Yang J. Solvent‐resistant polymeric microfiltration membranes based on oxidized electrospun poly(arylene sulfide sulfone) nanofibers. J Appl Polym Sci 2019. [DOI: 10.1002/app.48506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhenyan Liu
- College of Polymer Science and Engineering, Sichuan University Chengdu 610065 China
| | - Zhimei Wei
- Institute of Materials Science and Technology, Sichuan University Chengdu 610065 China
| | - Shengru Long
- Institute of Materials Science and Technology, Sichuan University Chengdu 610065 China
| | - Xiaojun Wang
- Institute of Materials Science and Technology, Sichuan University Chengdu 610065 China
| | - Jie Yang
- Institute of Materials Science and Technology, Sichuan University Chengdu 610065 China
- State Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 China
| |
Collapse
|
18
|
Han YJ, Liu YL. Preparation of Cross-Linkable Zwitterionic Polybenzoxazine with Sulfobetaine Groups and Corresponding Zwitterionic Thermosetting Resin for Antifouling Surface Coating. ACS APPLIED BIO MATERIALS 2019; 2:3799-3807. [PMID: 35021353 DOI: 10.1021/acsabm.9b00412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work demonstrates a cross-linkable zwitterionic polymer, the corresponding zwitterionic thermosetting resin, and their application for antifouling surface coating. The tertiary amine-containing benzoxazine group is utilized as a precursor to react with 1,3-propane sultone to introduce sulfobetaine moiety to benzoxazine group. The reaction route provides an effective approach for preparation of sulfobetaine-functionalized benzoxazines and the corresponding sulfobetaine-functionalized thermosetting resins of benzoxazines. The sulfobetaine-functionalized polybenzoxazine has been utilized as a coating material for ceramic porous membranes to impart protein-repelling characteristic to the membrane surface. In a filtration test on a Bovine serum albumin (BSA) aqueous solution, the sulfobetaine resin modified membrane shows a 96.2% of rejection rate and a 1680 ± 9 Lm2-h-1 of permeation flux at the first cycle test. In cycled measurements with membrane washing, the membrane shows a total flux decline ratio (Rt) and a reversible flux decline ratio (Rr) of about 46.9% and 43.1%, respectively. A high ratio of reversible fouling (Rr/Rt) of 91.9% is found, which supports the statement that the sulfobetaine-functionalized polybenzoxazine is an effective material to impart antifouling characteristic to porous materials for bioseparation and filtration.
Collapse
Affiliation(s)
- Yi-Jen Han
- Department of Chemical Engineering, National Tsing Hua University, #101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ying-Ling Liu
- Department of Chemical Engineering, National Tsing Hua University, #101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
19
|
Oh W, Park JW. Facile Synthesis of Robust and Pore-Size-Tunable Nanoporous Covalent Framework Membrane by Simultaneous Gelation and Phase Separation of Covalent Network/Poly(methyl methacrylate) Mixture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32398-32407. [PMID: 31393696 DOI: 10.1021/acsami.9b10175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a facile route toward the preparation of organic-solvent-resistant and three-dimensionally continuous nanoporous covalent framework membrane. The membrane was prepared from the blend of linear poly(methyl methacrylate) and the cross-linked polyurea-based organic network, followed by selective removal of the linear polymer part. The pore morphologies, porosity, and solvent permeation properties of the membrane could be simply modified by the initial composition of the poly(methyl methacrylate) added to a sol of the organic network. The pore was three-dimensionally continuous with pore size ranging from 5 nm to tens of nanometers. Despite the broad pore size distribution, ultrafiltration of sub-10 nm solutes was realized with a molecular size cutoff near 5 nm thanks to the bicontinuous pore structure of the membrane. The nanoporous structure exhibited long-term resistance to organic solvents as well as thermal stability and mechanical strength. The separation performance remained unchanged in organic-rich medium for a prolonged time. Our strategy provides a synthetic route to a structurally robust, three-dimensionally continuous nanoporous polymeric membrane for potential application that necessitates the use of organic solvent.
Collapse
Affiliation(s)
- Wangsuk Oh
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro , Bukgu , Gwangju 61005 , Korea
| | - Ji-Woong Park
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro , Bukgu , Gwangju 61005 , Korea
| |
Collapse
|
20
|
Porous membranes of thermosetting polybenzoxazine resins with interconnected-pores for organic solvent microfiltration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Zhu Z, Li Z, Zhong L, Zhang R, Cui F, Wang W. Dual-biomimetic superwetting silica nanofibrous membrane for oily water purification. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.071] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Du Q, Chen Z, Jiang X, Pang J, Jiang Z, Luan J. An oil/water separation nanofibrous membrane with a 3-D structure from the blending of PES and SPEEK. HIGH PERFORM POLYM 2019. [DOI: 10.1177/0954008318825297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new nanofibrous membrane (NFM) was prepared by blending polyethersulfone (PES) and sulfonated poly(ether ether ketone) (SPEEK) via electrospinning. The membrane exhibits good thermal stability and high mechanical strength. The hydrophilicity of the membrane could be controlled by adjusting the mass ratio of PES to SPEEK. PES acts as the backbone fiber and provides high mechanical strength, while SPEEK provides hydrophilic functional groups due to the strong hydrophilicity of the sulfonic group. The test results show that the composite NFM integrates the advantages of the two polymers. Simple adjustment of the weight ratios of the two polymers can enable an adjustable flux so that the membrane can be used for different kinds of oil/water separation. The results show that NFMs can not only separate immiscible oil/water systems but also separate oil-in-water emulsions. The immiscible oil/water separation process was driven only by gravity and had a high flux of 1119.63 Lm−2 h−1. This separation process conserves energy, which is beneficial for environmental protection. The separation flux of the oil-in-water emulsion was 758.71 Lm−2 h−1 bar−1 based on measurements under different pressures, and the separation purity total organic carbon was below 50 ppm. This work indicates that a membrane comprised of PES and SPEEK has excellent performance and can be used in different fields.
Collapse
Affiliation(s)
- Qiong Du
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Zheng Chen
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Xiangyu Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jinhui Pang
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Zhenhua Jiang
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Jiashuang Luan
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
23
|
Zhao Y, Lu D, Cao Y, Luo S, Zhao Q, Yang M, Xu C, Ma J. Interaction Analysis between Gravity-Driven Ceramic Membrane and Smaller Organic Matter: Implications for Retention and Fouling Mechanism in Ultralow Pressure-Driven Filtration System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13718-13727. [PMID: 30452244 DOI: 10.1021/acs.est.8b03618] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gravity-driven membranes (GDM) generally achieve high retention performance in filtration of organic matter with a smaller size than the membrane pore, yet the in-depth mechanism remains unclear. Thorough analysis of the retention mechanism is crucial for optimizing GDM properties and improving GDM filtration performance. The performance and interaction mechanism of gravity-driven ceramic membrane (GDCM) filtrating smaller organic matter (SOM) were systematically studied. Rejection rate grew noticeably for like-charged foulant, whereas it only grew slightly for opposite-charged foulant as operation height decreased. Flux declined more seriously at lower operation height, probably due to heavier cake fouling caused by the rejected foulant. Interactions of ceramic membrane-SOM were analyzed through extended Derjaguin-Landau-Verwey-Overbeek theory (XDLVO) and hydrodynamic permeation drag (PD). Among van der Waals (LW), acid-base (AB), and electrostatic (EL) forces in XDLVO, EL played a significant role on GDCM filtrating SOM, and altering membrane electrostatic property could greatly influence SOM filtration. Furthermore, the rising PD force largely weakened the EL dominant zone with operation height increasing, while barely influencing the LW and AB dominant zones. Therefore, the weakened EL-dominant repulsive zone caused less rejection of like-charged foulant with operation height increasing. Fe2O3- and MnO2-modified membranes further validated the comprehensive influence of LW, AB, EL, and PD interactions on GDCM filtration. The possible "trade-off" of pore blocking-cake fouling with operation height decreasing demonstrated potential enhancement for both rejection and antifouling performance by electrically modified membrane under ultralow pressure. This study provides insight on membrane selection/preparation/modification and performance control of ultralow pressure-driven filtration.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Ying Cao
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Shuangjiang Luo
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Mo Yang
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Chengbiao Xu
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| |
Collapse
|