1
|
Gao H, Jin C, Li X, So YM, Pan Y. A Hydrophilic Polyethylene Glycol-Blended Anion Exchange Membrane to Facilitate the Migration of Hydroxide Ions. Polymers (Basel) 2024; 16:1464. [PMID: 38891411 PMCID: PMC11175046 DOI: 10.3390/polym16111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
As one of the most important sources for green hydrogen, anion exchange membrane water electrolyzers (AEMWEs) have been developing rapidly in recent decades. Among these components, anion exchange membranes (AEMs) with high ionic conductivity and good stability play an important role in the performance of AEMWEs. In this study, we have developed a simple blending method to fabricate the blended membrane ImPSF-PEGx via the introduction of a hydrophilic PEG into the PSF-based ionic polymer. Given their hydrophilicity and coordination properties, the introduced PEGs are beneficial in assembling the ionic groups to form the ion-conducting channels. Moreover, an asymmetric structure is observed in ImPSF-PEGx membranes with a layer of finger-like cracks at the upper surface because PEGs can act as pore-forming agents. During the study, the ImPSF-PEGx membranes exhibited higher water uptake and ionic conductivity with lower swelling ratios and much better mechanical properties in comparison to the pristine ImPSF membrane. The ImPSF-PEG1000 membrane showed the best overall performance among the membranes with higher ionic conductivity (82.6 mS cm-1 at 80 °C), which was approximately two times higher than the conductivity of ImPSF, and demonstrated better mechanical and alkaline stability. The alkaline water electrolyzer assembled by ImPSF-PEG1000 achieved a current density of 606 mA cm-2 at 80 °C under conditions of 1 M KOH and 2.06 V, and maintained an essentially unchanged performance after 48 h running.
Collapse
Affiliation(s)
- Huaiming Gao
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Chenglou Jin
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xia Li
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yat-Ming So
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yu Pan
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Liu L, Ma H, Khan M, Hsiao BS. Recent Advances and Challenges in Anion Exchange Membranes Development/Application for Water Electrolysis: A Review. MEMBRANES 2024; 14:85. [PMID: 38668113 PMCID: PMC11051812 DOI: 10.3390/membranes14040085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
In recent years, anion exchange membranes (AEMs) have aroused widespread interest in hydrogen production via water electrolysis using renewable energy sources. The two current commercial low-temperature water electrolysis technologies used are alkaline water electrolysis (AWE) and proton exchange membrane (PEM) water electrolysis. The AWE technology exhibited the advantages of high stability and increased cost-effectiveness with low hydrogen production efficiency. In contrast, PEM water electrolysis exhibited high hydrogen efficiency with low stability and cost-effectiveness, respectively. Unfortunately, the major challenges that AEMs, as well as the corresponding ion transportation membranes, including alkaline hydrogen separator and proton exchange membranes, still face are hydrogen production efficiency, long-term stability, and cost-effectiveness under working conditions, which exhibited critical issues that need to be addressed as a top priority. This review comprehensively presented research progress on AEMs in recent years, providing a thorough understanding of academic studies and industrial applications. It focused on analyzing the chemical structure of polymers and the performance of AEMs and established the relationship between the structure and efficiency of the membranes. This review aimed to identify approaches for improving AEM ion conductivity and alkaline stability. Additionally, future research directions for the commercialization of anion exchange membranes were discussed based on the analysis and assessment of the current applications of AEMs in patents.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Madani Khan
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Benjamin S. Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
3
|
Patil SS, V M, Kammakakam I, Swamy MHH, Patil KS, Lai Z, Rao H N A. Quinuclidinium-piperidinium based dual hydroxide anion exchange membranes as highly conductive and stable electrolyte materials for alkaline fuel cell applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Wang Z, Zhou SF, Zhuo YZ, Lai AN, Lu YZ, Wu XB. Adamantane-based block poly(arylene ether sulfone)s as anion exchange membranes. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Wang Q, Huang L, Zheng J, Zhang Q, Qin G, Li S, Zhang S. Design, synthesis and characterization of anion exchange membranes containing guanidinium salts with ultrahigh dimensional stability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Yang W, Chen J, Yan J, Liu S, Yan Y, Zhang Q. Advance of click chemistry in anion exchange membranes for energy application. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weihong Yang
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Jin Chen
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Jing Yan
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Shuang Liu
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Yi Yan
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| |
Collapse
|
7
|
|
8
|
Yang W, Liu S, Yan J, Zhong F, Jia N, Yan Y, Zhang Q. Metallo-Polyelectrolyte-Based Robust Anion Exchange Membranes via Acetalation of a Commodity Polymer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Weihong Yang
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Shuang Liu
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Jing Yan
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Fenglin Zhong
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Nanfang Jia
- Beijing BOE Display Technology Co., Ltd., Beijing 100176, P. R. China
| | - Yi Yan
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| |
Collapse
|
9
|
Facilitating ionic conduction for anion exchange membrane via employing star-shaped block copolymer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119290] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Wang K, Zhang Z, Li S, Zhang H, Yue N, Pang J, Jiang Z. Side-Chain-Type Anion Exchange Membranes Based on Poly(arylene ether sulfone)s Containing High-Density Quaternary Ammonium Groups. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23547-23557. [PMID: 33979135 DOI: 10.1021/acsami.1c00889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To obtain anion exchange membranes with both high ionic conductivity and good dimensional stability, a series of side-chain-type poly(arylene ether sulfone)s (PAES-QDTPM-x) were designed and synthesized. Quaternary ammonium (QA) groups were densely aggregated and grafted onto the main chain via flexible hydrophobic spacers. Well-defined microphase separation was confirmed by small-angle X-ray scattering. PAES-QDTPM-0.30 exhibited reasonably high conductivity (39.4 mS cm-1 at 20 °C and 76.1 mS cm-1 at 80 °C) and excellent dimensional stability at 80 °C (11.9% in length, 11.2% in thickness) due to the concentration of ion clusters and the side-chain-type structure. All membranes maintained over 82% of the conductivity after alkali treatment for 14 days. In the H2/O2 fuel cell performance test, the maximum power density of PAES-QDTPM-0.30 at 60 °C was 225.8 mW cm-2.
Collapse
Affiliation(s)
- Kaiqi Wang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Zhenpeng Zhang
- Shenyang Rubber Research & Design Institute Company Limited, Shenyang 110021, People's Republic of China
| | - Su Li
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Haibo Zhang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Nailin Yue
- School of Materials Science and Engineering & Electron Microscopy Center, Jilin University, Changchun 130012, People's Republic of China
| | - Jinhui Pang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Zhenhua Jiang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
11
|
Liu L, Wang C, He Z, Liu H, Hu Q, Naik N, Guo Z. Bi-functional side chain architecture tuned amphoteric ion exchange membranes for high-performance vanadium redox flow batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Highly stable electron-withdrawing C O link-free backbone with branched cationic side chain as anion exchange membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Anion exchange membrane based on poly(arylene ether ketone) containing long alkyl densely quaternized carbazole derivative pendant. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Abouzari-Lotf E, Jacob MV, Ghassemi H, Zakeri M, Nasef MM, Abdolahi Y, Abbasi A, Ahmad A. Highly conductive anion exchange membranes based on polymer networks containing imidazolium functionalised side chains. Sci Rep 2021; 11:3764. [PMID: 33580110 PMCID: PMC7881124 DOI: 10.1038/s41598-021-83161-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/28/2021] [Indexed: 11/09/2022] Open
Abstract
Two novel types of anion exchange membranes (AEMs) having imidazolium-type functionalised nanofibrous substrates were prepared using the facile and potentially scalable method. The membranes' precursors were prepared by graft copolymerization of vinylbenzyl chloride (VBC) onto syndiotactic polypropylene (syn-PP) and polyamide-66 (PA-66) nanofibrous networks followed by crosslinking with 1,8-octanediamine, thermal treatment and subsequent functionalisation of imidazolium groups. The obtained membranes displayed an ion exchange capacity (IEC) close to 1.9 mmol g-1 and ionic (OH-) conductivity as high as 130 mS cm-1 at 80 °C. This was coupled with a reasonable alkaline stability representing more than 70% of their original conductivity under accelerated degradation test in 1 M KOH at 80 °C for 360 h. The effect of ionomer binder on the performance of the membrane electrode assembly (MEA) in AEM fuel cell was evaluated with the optimum membrane. The MEA showed a power density of as high as 440 mW cm-2 at a current density is 910 mA cm-2 with diamine crosslinked quaternized polysulfone (DAPSF) binder at 80 °C with 90% humidified H2 and O2 gases. Such performance was 2.3 folds higher than the corresponding MEA performance with quaternary ammonium polysulfone (QAPS) binder at the same operating conditions. Overall, the newly developed membrane was found to possess not only an excellent combination of physico-chemical properties and a reasonable stability but also to have a facile preparation procedure and cheap ingredients making it a promising candidate for application in AEM fuel cell.
Collapse
Affiliation(s)
- Ebrahim Abouzari-Lotf
- Advanced Materials Research Group, Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia.
- Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstraße 11, 89081, Ulm, Germany.
| | - Mohan V Jacob
- Electronics Materials Lab., College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Hossein Ghassemi
- Department of Macromolecular Science & Engineering, Case Western Reserve University, Cleveland, 44106-7202, USA
| | - Masoumeh Zakeri
- Advanced Materials Research Group, Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia
| | - Mohamed Mahmoud Nasef
- Advanced Materials Research Group, Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia.
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Yadollah Abdolahi
- Nano Chemical Engineering Department, Shiraz University, Shiraz, Iran
| | - Ali Abbasi
- Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, Thailand
| | - Arshad Ahmad
- Advanced Materials Research Group, Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Park EJ, Maurya S, Martinez U, Kim YS, Mukundan R. Quaternized poly(arylene ether benzonitrile) membranes for vanadium redox flow batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Zhang Y, Chen W, Li T, Yan X, Zhang F, Wang X, Wu X, Pang B, He G. Tuning hydrogen bond and flexibility of N-spirocyclic cationic spacer for high performance anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118507] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Zhang F, Li T, Chen W, Yan X, Wu X, Jiang X, Zhang Y, Wang X, He G. High-Performance Anion Exchange Membranes with Para-Type Cations on Electron-Withdrawing C═O Links Free Backbone. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01710] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tiantian Li
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wanting Chen
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoming Yan
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Zhang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaozhou Wang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
|
19
|
Liao J, Yu X, Chen Q, Gao X, Ruan H, Shen J, Gao C. Monovalent anion selective anion-exchange membranes with imidazolium salt-terminated side-chains: Investigating the effect of hydrophobic alkyl spacer length. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117818] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Zhang Y, Chen W, Yan X, Zhang F, Wang X, Wu X, Pang B, Wang J, He G. Ether spaced N-spirocyclic quaternary ammonium functionalized crosslinked polysulfone for high alkaline stable anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117650] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Blend anion exchange membranes containing polymer of intrinsic microporosity for fuel cell application. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
|
23
|
Li S, Zhang H, Wang K, Yang F, Han Y, Sun Y, Pang J, Jiang Z. Micro-block versus random quaternized poly(arylene ether sulfones) with highly dense quaternization units for anion exchange membranes. Polym Chem 2020. [DOI: 10.1039/c9py01951k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A systematic study was carried out to investigate the effect of different distributions of conducting groups in segments for poly(arylene ether sulfone)s.
Collapse
Affiliation(s)
- Su Li
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Haibo Zhang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Kaiqi Wang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Fan Yang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Yuntao Han
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Yirong Sun
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Jinhui Pang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Zhenhua Jiang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
24
|
Kim Y, Wang Y, France-Lanord A, Wang Y, Wu YCM, Lin S, Li Y, Grossman JC, Swager TM. Ionic Highways from Covalent Assembly in Highly Conducting and Stable Anion Exchange Membrane Fuel Cells. J Am Chem Soc 2019; 141:18152-18159. [DOI: 10.1021/jacs.9b08749] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yoonseob Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yanming Wang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Arthur France-Lanord
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yichong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - You-Chi Mason Wu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sibo Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifan Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey C. Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Li S, Pang J, Chen Z, Liu D, Han Y, Wang K, Huang S, Jiang Z. A high-performance anion exchange membrane based on poly(arylene ether sulfone) with a high concentration of quaternization units. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117266] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Chen N, Lu C, Li Y, Long C, Li Z, Zhu H. Tunable multi-cations-crosslinked poly(arylene piperidinium)-based alkaline membranes with high ion conductivity and durability. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Samsudin AM, Hacker V. Preparation and Characterization of PVA/PDDA/Nano-Zirconia Composite Anion Exchange Membranes for Fuel Cells. Polymers (Basel) 2019; 11:polym11091399. [PMID: 31454937 PMCID: PMC6780618 DOI: 10.3390/polym11091399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022] Open
Abstract
Anion exchange membranes (AEMs) contribute significantly to enhance the performance and efficiency of alkaline polymer electrolyte fuel cells (APEFCs). A sequence of composite anion exchange membranes (AEMs) consisting of poly(vinyl alcohol) (PVA), poly(diallyldimethylammonium chloride) (PDDA), and nano-zirconia (NZ) has been prepared by a solution casting technique. The effect of zirconia mass ratio on attribute and performance of composite AEMs was investigated. The chemical structures, morphology, thermal, and mechanical properties of AEMs were characterized by FTIR, SEM, thermogravimetric analysis, and universal testing machine, respectively. The performance of composite AEMs was verified using water uptake, swelling degree, ion-exchange capacity, and OH- conductivity measurement. The nano-zirconia was homogeneously dispersed in the PVA/PDDA AEMs matrix. The mechanical properties of the composite AEMs were considerably enhanced with the addition of NZ. Through the introduction of 1.5 wt.% NZ, PVA/PDDA/NZ composite AEMs acquired the highest hydroxide conductivity of 31.57 mS·cm-1 at ambient condition. This study demonstrates that the PVA/PDDA/NZ AEMs are a potential candidate for APEFCs application.
Collapse
Affiliation(s)
- Asep Muhamad Samsudin
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, 8010 Graz, Austria.
- Department of Chemical Engineering, Diponegoro University, Jawa Tengah 50275, Indonesia.
| | - Viktor Hacker
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
28
|
Highly Conductive and Water-Swelling Resistant Anion Exchange Membrane for Alkaline Fuel Cells. Int J Mol Sci 2019; 20:ijms20143470. [PMID: 31311111 PMCID: PMC6679103 DOI: 10.3390/ijms20143470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 11/29/2022] Open
Abstract
To ameliorate the trade-off effect between ionic conductivity and water swelling of anion exchange membranes (AEMs), a crosslinked, hyperbranched membrane (C-HBM) combining the advantages of densely functionalization architecture and crosslinking structure was fabricated by the quaternization of the hyperbranched poly(4-vinylbenzyl chloride) (HB-PVBC) with a multiamine oligomer poly(N,N-Dimethylbenzylamine). The membrane displayed well-developed microphase separation morphology, as confirmed by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Moreover, the corresponding high ionic conductivity, strongly depressed water swelling, high thermal stability, and acceptable alkaline stability were achieved. Of special note is the much higher ratio of hydroxide conductivity to water swelling (33.0) than that of most published side-chain type, block, and densely functionalized AEMs, implying its higher potential for application in fuel cells.
Collapse
|
29
|
Synthesis of precisely diphenyl ether-functionalized polyethylene via acyclic diene metathesis polymerization. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Yang J, Tang Z, Yin H, Liu Y, Wang L, Tang H, Li Y. Poly(arylene ether nitrile) Composites with Surface-Hydroxylated Calcium Copper Titanate Particles for High-Temperature-Resistant Dielectric Applications. Polymers (Basel) 2019; 11:polym11050766. [PMID: 31052407 PMCID: PMC6571784 DOI: 10.3390/polym11050766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 12/19/2022] Open
Abstract
In order to develop high-performance dielectric materials, poly(arylene ether nitrile)-based composites were fabricated by employing surface-hydroxylated calcium copper titanate (CCTO) particles. The results indicated that the surface hydroxylation of CCTO effectively improved the interfacial compatibility between inorganic fillers and the polymer matrix. The composites exhibit not only high glass transition temperatures and an excellent thermal stability, but also excellent flexibility and good mechanical properties, with a tensile strength over 60 MPa. Furthermore, the composites possess enhanced permittivity, relatively low loss tangent, good permittivity-frequency stability and dielectric-temperature stability under 160 °C. Therefore, it furnishes an effective path to acquire high-temperature-resistant dielectric materials for various engineering applications.
Collapse
Affiliation(s)
- Junyi Yang
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Zili Tang
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Hang Yin
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yan Liu
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Ling Wang
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Hailong Tang
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China.
- Chongqing Key Laboratory of Mold Technology, Chongqing University of Technology, Chongqing 400054, China.
| | - Youbing Li
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China.
- Chongqing Key Laboratory of Mold Technology, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
31
|
Comb-shaped anion exchange membrane to enhance phosphoric acid purification by electro-electrodialysis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Zhan Y, He S, Wan X, Zhao S, Bai Y. Thermally and chemically stable poly(arylene ether nitrile)/halloysite nanotubes intercalated graphene oxide nanofibrous composite membranes for highly efficient oil/water emulsion separation in harsh environment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
Abdallah H, Taman R, Elgayar D, Farag H. Antibacterial blend polyvinylidene fluoride/polyethyleneimine membranes for salty oil emulsion separation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Liu FH, Lin CX, Hu EN, Yang Q, Zhang QG, Zhu AM, Liu QL. Anion exchange membranes with well-developed conductive channels: Effect of the functional groups. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Tailoring the nanophase-separated morphology of anion exchange membrane by embedding aliphatic chains of different lengths into aromatic main chains. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Preparation and Characterization of TiO₂/g-C₃N₄/PVDF Composite Membrane with Enhanced Physical Properties. MEMBRANES 2018; 8:membranes8010014. [PMID: 29510556 PMCID: PMC5872196 DOI: 10.3390/membranes8010014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 01/25/2023]
Abstract
TiO₂/g-C₃N₄/PVDF composite membranes were prepared by a phase inversion method. A comparison of the performance and morphology was carried out among pure PVDF, g-C₃N₄/PVDF, TiO₂/PVDF and TiO₂/g-C₃N₄/PVDF composite membranes. The results of permeability and instrumental analysis indicated that TiO₂ and g-C₃N₄ organic-inorganic composites obviously changed the performance and structure of the PVDF membranes. The porosity and water content of 0.75TiO₂/0.25g-C₃N₄/PVDF composite membranes were 97.3 and 188.3 L/(m²·h), respectively. The porosity and water content of the 0.75TiO₂/0.25g-C₃N₄ membranes were increased by 20.8% and 27.4%, respectively, compared with that of pure PVDF membranes. This suggested that the combination of organic-inorganic composite with PVDF could remarkably improve UTS, membrane porosity and water content.
Collapse
|