1
|
Vatanpour V, Tuncay G, Teber OO, Paziresh S, Tavajohi N, Koyuncu İ. Introducing the SNW-1 Covalent Organic Framework to the Polyamide Layer of the TFC-RO Membrane with Enhanced Permeability and Desalination Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65194-65210. [PMID: 39539192 DOI: 10.1021/acsami.4c14923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study investigates the synthesis and characterization of Schiff base network-1 (SNW-1) covalent organic framework (COF) nanomaterials and their application in the fabrication of thin-film nanocomposite (TFN) membranes. The embedding of SNW-1 COF in reverse osmosis (RO) membranes with a polysulfone (PSf) substrate was done using the interfacial polymerization method. The result of the study demonstrated that the porous and hydrophilic structure of the COF increased the hydrophilic properties of the produced RO membranes. When the COF was embedded with a concentration of 0.02 wt %, the hydrophilicity of the RO membrane was higher than that of the other membranes, with a contact angle value of 45.2°. Pure water flux, saline solution flux, and humic acid (HA)/sodium chloride (NaCl) foulant solution flux were measured to determine the membrane performance, and it was found that as the COF ratio increased, the fluxes increased up to a certain concentration rate. The RO membrane with a SNW-1 concentration of 0.005 wt % had the highest values of pure water flux and saline solution flux with high salt rejection (34.2 and 32.2 LMH, 97.1%, respectively) and was the most resistant membrane against fouling. This study presents the potential of the SNW-1 COF with precise design capabilities and controlled unique properties as an additive for desalination applications.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Gizem Tuncay
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Oğuz Orhun Teber
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Naser Tavajohi
- Department of Chemistry, Umeå University, Umeå 90187, Sweden
| | - İsmail Koyuncu
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| |
Collapse
|
2
|
Kuzminova A, Dmitrenko M, Stepanova A, Karyakina A, Selyutin A, Su R, Penkova A. Novel Mixed-Matrix Pervaporation Membrane Based on Polyether Block Amide Modified with Ho-Based Metal-Organic Framework. Polymers (Basel) 2024; 16:3245. [PMID: 39683990 DOI: 10.3390/polym16233245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Segmented polymers, such as polyether block amide (PEBA), exhibit unique properties due to the combination of different segments. PEBA consists of soft polyester and rigid polyamide blocks, enabling its use in various industrial applications, including membrane technologies. In this study, PEBA membranes modified with a holmium-based metal-organic framework (Ho-1,3,5-H3btc) were developed for enhanced pervaporation separation of water/isopropanol and water/phenol mixtures. The effect of 1-7 wt.% Ho-1,3,5-H3btc content variation and the selection of a porous substrate (commercial from fluoroplast F42L (MFFC) and developed membranes from polyvinylidene fluoride without (PVDF) and with a non-woven polyester support (PVDF-s)) on dense and/or supported membrane properties, respectively, was investigated. The dense and supported PEBA/Ho-1,3,5-H3btc membranes were studied by use of Fourier transform infrared spectroscopy, scanning electron and atomic force microscopies, swelling measurements, and pervaporation experiments. The supported membrane from PEBA with 5 wt.% Ho-1,3,5-H3btc applied onto the PVDF-s substrate exhibited optimal pervaporation performance: a 1040 g/(m2h) permeation flux and a 5.2 separation factor in water/phenol (1 wt.%) mixture separation at 50 °C due to optimal values of roughness, swelling degree, and selective layer thickness. This finding highlights the potential of incorporating Ho-1,3,5-H3btc into PEBA for developing high-performance pervaporation membranes.
Collapse
Affiliation(s)
- Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Anastasia Stepanova
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Anna Karyakina
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Artem Selyutin
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| |
Collapse
|
3
|
Kuzminova A, Dmitrenko M, Salomatin K, Vezo O, Kirichenko S, Egorov S, Bezrukova M, Karyakina A, Eremin A, Popova E, Penkova A, Selyutin A. Holmium-Containing Metal-Organic Frameworks as Modifiers for PEBA-Based Membranes. Polymers (Basel) 2023; 15:3834. [PMID: 37765688 PMCID: PMC10534401 DOI: 10.3390/polym15183834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, there has been an active search for new modifiers to create hybrid polymeric materials for various applications, in particular, membrane technology. One of the topical modifiers is metal-organic frameworks (MOFs), which can significantly alter the characteristics of obtained mixed matrix membranes (MMMs). In this work, new holmium-based MOFs (Ho-MOFs) were synthesized for polyether block amide (PEBA) modification to develop novel MMMs with improved properties. The study of Ho-MOFs, polymers and membranes was carried out by methods of X-ray phase analysis, scanning electron and atomic force microscopies, Fourier transform infrared spectroscopy, low-temperature nitrogen adsorption, dynamic and kinematic viscosity, static and dynamic light scattering, gel permeation chromatography, thermogravimetric analysis and contact angle measurements. Synthesized Ho-MOFs had different X-ray structures, particle forms and sizes depending on the ligand used. To study the effect of Ho-MOF modifier on membrane transport properties, PEBA/Ho-MOFs membrane retention capacity was evaluated in vacuum fourth-stage filtration for dye removal (Congo Red, Fuchsin, Glycine thymol blue, Methylene blue, Eriochrome Black T). Modified membranes demonstrated improved flux and rejection coefficients for dyes containing amino groups: Congo Red, Fuchsin (PEBA/Ho-1,3,5-H3btc membrane possessed optimal properties: 81% and 68% rejection coefficients for Congo Red and Fuchsin filtration, respectively, and 0.7 L/(m2s) flux).
Collapse
Affiliation(s)
- Anna Kuzminova
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Mariia Dmitrenko
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Kirill Salomatin
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Olga Vezo
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Sergey Kirichenko
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Semyon Egorov
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Marina Bezrukova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy pr., St. Petersburg 199004, Russia; (M.B.); (A.E.); (E.P.)
| | - Anna Karyakina
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Alexey Eremin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy pr., St. Petersburg 199004, Russia; (M.B.); (A.E.); (E.P.)
| | - Ekaterina Popova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy pr., St. Petersburg 199004, Russia; (M.B.); (A.E.); (E.P.)
- Faculty of Chemical and Biotechnology, Organic Chemistry Department, Saint-Petersburg State Institute of Technology (Technical University), 24-26/49 Letter A Moskovski Ave., St. Petersburg 190013, Russia
- Faculty of Industrial Drug Technologies, Department of Chemical Technology of Medicinal Substances, Saint-Petersburg State Chemical and Pharmaceutical University, 14 Prof. Popova Str., St. Petersburg 197022, Russia
| | - Anastasia Penkova
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Artem Selyutin
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| |
Collapse
|
4
|
Wu C, Xia L, Xia S, Van der Bruggen B, Zhao Y. Advanced Covalent Organic Framework-Based Membranes for Recovery of Ionic Resources. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206041. [PMID: 36446638 DOI: 10.1002/smll.202206041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Membrane technology has shown a viable potential in conversion of liquid-waste or high-salt streams to fresh waters and resources. However, the non-adjustability pore size of traditional membranes limits the application of ion capture due to their low selectivity for target ions. Recently, covalent organic frameworks (COFs) have become a promising candidate for construction of advanced ion separation membranes for ion resource recovery due to their low density, large surface area, tunable channel structure, and tailored functionality. This tutorial review aims to analyze and summarize the progress in understanding ion capture mechanisms, preparation processes, and applications of COF-based membranes. First, the design principles for target ion selectivity are illustrated in terms of theoretical simulation of ions transport in COFs, and key properties for ion selectivity of COFs and COF-based membranes. Next, the fabrication methods of diverse COF-based membranes are classified into pure COF membranes, COF continuous membranes, and COF mixed matrix membranes. Finally, current applications of COF-based membranes are highlighted: desalination, extraction, removal of toxic metal ions, radionuclides and lithium, and acid recovery. This review presents promising approaches for design, preparation, and application of COF-based membranes in ion selectivity for recovery of ionic resources.
Collapse
Affiliation(s)
- Chao Wu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lei Xia
- Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, Leuven, B-3001, Belgium
| | - Shengji Xia
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| |
Collapse
|
5
|
Clarizia G, Bernardo P. Polyether Block Amide as Host Matrix for Nanocomposite Membranes Applied to Different Sensitive Fields. MEMBRANES 2022; 12:1096. [PMID: 36363651 PMCID: PMC9693152 DOI: 10.3390/membranes12111096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/31/2023]
Abstract
The cornerstones of sustainable development require the treatment of wastes or contaminated streams allowing the separation and recycling of useful substances by a more rational use of energy sources. Separation technologies play a prominent role, especially when conducted by inherently environmentally friendly systems such as membrane operations. However, high-performance materials are more and more needed to improve the separative performance of polymeric materials nanocomposites are ideally suited to develop advanced membranes by combining organic polymers with suitable fillers having superior properties. In this area, polyether block amide copolymers (Pebax) are increasingly adopted as host matrices due to their distinctive properties in terms of being lightweight and easy to process, having good resistance to most chemicals, flexibility and high strength. In this light, the present review seeks to provide a comprehensive examination of the progress in the development of Pebax-based nanocomposite films for their application in several sensitive fields, that are challenging and at the same time attractive, including olefin/paraffin separation, pervaporation, water treatment, flexible films for electronics, electromagnetic shielding, antimicrobial surfaces, wound dressing and self-venting packaging. It covers a wide range of materials used as fillers and analyzes the properties of the derived nanocomposites and their performance. The general principles from the choice of the material to the approaches for the heterogeneous phase compatibilization as well as for the performance improvement were also surveyed. From a detailed analysis of the current studies, the most effective strategies to overcome some intrinsic limitations of these nanocomposites are highlighted, providing guidelines for the correlated research.
Collapse
Affiliation(s)
| | - Paola Bernardo
- Institute on Membrane Technology (ITM-CNR), via P. Bucci 17/C, 87036 Rende, CS, Italy
| |
Collapse
|
6
|
Zhan X, Zhao X, Ge R, Gao Z, Wang L, Sun X, Li J. Constructing high-efficiency transport pathways via incorporating DP-POSS into PEG membranes for pervaporative desulfurization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Emerging membranes for separation of organic solvent mixtures by pervaporation or vapor permeation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Silver ion functionalized covalent organic polymer for selective online solid phase microextraction of unsaturated fatty acid methyl esters. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Zou W, Shang H, Han X, Zhang P, Cao X, Lu P, Hua C. Enhanced polyphosphazene membranes for CO2/CH4 separation via molecular design. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Chen Z, Zhang P, Wu H, Sun S, You X, Yuan B, Hou J, Duan C, Jiang Z. Incorporating amino acids functionalized graphene oxide nanosheets into Pebax membranes for CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Ren C, Si Z, Qu Y, Li S, Wu H, Meng F, Zhang X, Wang Y, Liu C, Qin P. CF3-MOF enhanced pervaporation selectivity of PDMS membranes for butanol separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Dai X, Li S, Li S, Ke K, Pang J, Wu C, Yan Z. High antibacterial activity of chitosan films with covalent organic frameworks immobilized silver nanoparticles. Int J Biol Macromol 2022; 202:407-417. [PMID: 34999048 DOI: 10.1016/j.ijbiomac.2021.12.174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
Abstract
In this study, chitosan (CS) film containing covalent organic frameworks (COFs) immobilized silver nanoparticles (AgNPs) were developed for food packaging with improved antibacterial activities and film properties. COFs-AgNPs were fabricated via in-situ synthesis of immobilizing AgNPs on COFs. Transmission electron microscope, Zeta potential, X-ray diffraction, element mapping and Fourier transform infrared spectroscopy confirmed the successful fabrication of COFs-AgNPs, and COFs-AgNPs showed superior antibacterial activity against S. aureus and E. coli. Furthermore, the as-prepared COFs-AgNPs composite was further used to fabricate CS composite films (CS/COFs-AgNPs) by a solution casting method. The findings showed that the tensile strength of the nanocomposite films enhanced dramatically with the increase of the COFs-AgNPs content, while the UV-visible light barrier property, water swelling and solubility properties, and water vapor permeability (WVP) decreased significantly. Not only that, the CS/COFs-AgNPs nanocomposite films also showed outstanding antibacterial activity and effectively prolonged the storage time of white crucian carp (Carassius auratus). As a result, CS/COFs-AgNPs nanocomposite films show great potential in active food packaging.
Collapse
Affiliation(s)
- Xinxian Dai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuhan Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Keqin Ke
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiming Yan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Xu M, Jiang B, Dou H, Yang N, Xiao X, Tantai X, Sun Y, Zhang L. Customized facilitated transport membranes by mixed strategy for ethylene/ethane separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Mao H, Li SH, Xu LH, Wang S, Liu WM, Lv MY, Lv J, Zhao ZP. Zeolitic imidazolate frameworks in mixed matrix membranes for boosting phenol/water separation: Crystal evolution and preferential orientation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Kujawa J, Al-Gharabli S, Muzioł TM, Knozowska K, Li G, Dumée LF, Kujawski W. Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Desulfurization of a Model Fuel using Pervaporation Membranes Containing Zn-MOFs. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02472-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Novel covalent organic polymer-supported Ag nanoparticles as a catalyst for nitroaromatics reduction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126441] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Porous carbon nanosphere-based imprinted composite membrane for selective and effective separation of dibenzothiophene. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Abdali A, Mahmoudian M, Eskandarabadi SM, Nozad E, Enayati M. Elimination of dibenzothiophene from n-hexane by nano-composite membrane containing Cu-MOF in a pervaporation process. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02087-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Nalaparaju A, Jiang J. Metal-Organic Frameworks for Liquid Phase Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003143. [PMID: 33717851 PMCID: PMC7927635 DOI: 10.1002/advs.202003143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Indexed: 05/10/2023]
Abstract
In the last two decades, metal-organic frameworks (MOFs) have attracted overwhelming attention. With readily tunable structures and functionalities, MOFs offer an unprecedentedly vast degree of design flexibility from enormous number of inorganic and organic building blocks or via postsynthetic modification to produce functional nanoporous materials. A large extent of experimental and computational studies of MOFs have been focused on gas phase applications, particularly the storage of low-carbon footprint energy carriers and the separation of CO2-containing gas mixtures. With progressive success in the synthesis of water- and solvent-resistant MOFs over the past several years, the increasingly active exploration of MOFs has been witnessed for widespread liquid phase applications such as liquid fuel purification, aromatics separation, water treatment, solvent recovery, chemical sensing, chiral separation, drug delivery, biomolecule encapsulation and separation. At this juncture, the recent experimental and computational studies are summarized herein for these multifaceted liquid phase applications to demonstrate the rapid advance in this burgeoning field. The challenges and opportunities moving from laboratory scale towards practical applications are discussed.
Collapse
Affiliation(s)
- Anjaiah Nalaparaju
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| |
Collapse
|
22
|
Turangan N, Xu Y, Spratt H, Rintoul L, Bottle S, MacLeod J. Self-supporting covalent organic framework membranes synthesized through two different processes: solvothermal annealing and solvent vapor annealing. NANOTECHNOLOGY 2021; 32:075604. [PMID: 32937612 DOI: 10.1088/1361-6528/abb903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rigid, freestanding covalent organic framework (COF-1) membranes have been synthesized from 1,4-benzenediboronic acid (BDBA) precursors using two different approaches: room temperature solvent-vapour annealing (SVA) and solvothermal annealing (SA). Characterization of films using Fourier-transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), and various microscopies shows that the films obtained through the two different routes vary in their retained BDBA proportion, crystal size and macroscale morphology. Gas adsorption measurements give specific surface areas of 579 ± 7 m2 g-1 and 739 ± 11 m2 g-1 respectively, suggesting that the average porosity of these films is competitive with bulk-synthesized COF-1 particles. The films have a stratified structure, with a dense, thin top layer and a thicker, sponge-like base layer. Using nanoindentation, we measured the Young's modulus at the top surface of the SVA and SA films to be 3.64 ± 1.20 GPa and 3.33 ± 0.12 GPa respectively, with the smaller uncertainty for the SA film attributed to a more uniform morphology. These measurements provide useful experimental data pertaining to COF-1 mechanical properties, furnishing information relevant to the use of these free-standing membranes in applications such as gas filtration or storage.
Collapse
Affiliation(s)
- Nikka Turangan
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
| | - Yanan Xu
- Institute of Future Environments (IFE), Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
| | - Henry Spratt
- Institute of Future Environments (IFE), Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
| | - Llewellyn Rintoul
- Institute of Future Environments (IFE), Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
| | - Steven Bottle
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
| | - Jennifer MacLeod
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
| |
Collapse
|
23
|
Peng P, Lan Y, Liang L, Jia K. Membranes for bioethanol production by pervaporation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:10. [PMID: 33413629 PMCID: PMC7791809 DOI: 10.1186/s13068-020-01857-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bioethanol as a renewable energy resource plays an important role in alleviating energy crisis and environmental protection. Pervaporation has achieved increasing attention because of its potential to be a useful way to separate ethanol from the biomass fermentation process. RESULTS This overview of ethanol separation via pervaporation primarily concentrates on transport mechanisms, fabrication methods, and membrane materials. The research and development of polymeric, inorganic, and mixed matrix membranes are reviewed from the perspective of membrane materials as well as modification methods. The recovery performance of the existing pervaporation membranes for ethanol solutions is compared, and the approaches to further improve the pervaporation performance are also discussed. CONCLUSIONS Overall, exploring the possibility and limitation of the separation performance of PV membranes for ethanol extraction is a long-standing topic. Collectively, the quest is to break the trade-off between membrane permeability and selectivity. Based on the facilitated transport mechanism, further exploration of ethanol-selective membranes may focus on constructing a well-designed microstructure, providing active sites for facilitating the fast transport of ethanol molecules, hence achieving both high selectivity and permeability simultaneously. Finally, it is expected that more and more successful research could be realized into commercial products and this separation process will be deployed in industrial practices in the near future.
Collapse
Affiliation(s)
- Ping Peng
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Yongqiang Lan
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China.
- Key Laboratory of Biobased Material Science & Technology (Education Ministry), Northeast Forestry University, Harbin, 150040, China.
| | - Lun Liang
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Kemeng Jia
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| |
Collapse
|
24
|
Wu C, Wang X, Zhu T, Li P, Xia S. Covalent organic frameworks embedded membrane via acetic-acid-catalyzed interfacial polymerization for dyes separation: Enhanced permeability and selectivity. CHEMOSPHERE 2020; 261:127580. [PMID: 32736241 DOI: 10.1016/j.chemosphere.2020.127580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
With the increasing demand of high water-quality, membrane filtration technologies are playing further important roles in water treatment owing to their small footprints, reduced use of chemicals and stable performances. However, the inherent permeability-selectivity trade-off is still a significant obstacle restricting the broad applications of membrane separation. Hydrophilic modification via doping nanoparticles into membranes is considered an effective solution to improve the permeability while maintaining selectivity. However, agglomeration of nanoparticles often results in inhomogeneity of the modified membranes. In this study, hybrid membranes with separated covalent organic framework (COF) particles that were uniformly embedded in the membrane surface pores were firstly fabricated via acetic-acid-catalyzed in situ synthesis. Owing to the ample hydrophilic chemical groups and tunable molecular transport channels in COFs, the modified membranes yielded almost twice higher water flux (about 200 L m-2·h-1·bar) than the pristine membranes with simultaneously enhanced rejection of water pollutants (i.e., dyes). In addition, the pure organic structure of COF improves the polymer-filler interaction of the mixed film, thereby reducing the risk of leakage. Therefore, the hybrid membranes also exhibited relatively high stability in long-term operations and different pH conditions, which makes them promising candidates in future membrane applications.
Collapse
Affiliation(s)
- Chao Wu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Xiaoping Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Tongren Zhu
- Arcadis-US, Inc, 1717 West 6 Street #210, Austin, TX, 78703, USA
| | - Pan Li
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| |
Collapse
|
25
|
Jie P, Du J, Tan W, Tang J, Zhang F, Qu F. Effect of cross‐linking degree on proton conductivity of a Schiff‐Base network impregnated with Brønsted acids. J Appl Polym Sci 2020. [DOI: 10.1002/app.49745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pengfei Jie
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering Harbin Normal University Harbin China
| | - Jiarui Du
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering Harbin Normal University Harbin China
| | - Wei Tan
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering Harbin Normal University Harbin China
| | - Jiyu Tang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering Harbin Normal University Harbin China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering Harbin Normal University Harbin China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering Harbin Normal University Harbin China
| |
Collapse
|
26
|
Abstract
In the wake of sustainable development, materials research is going through a green revolution that is putting energy-efficient and environmentally friendly materials and methods in the limelight. In this quest for greener alternatives, covalent organic frameworks (COFs) have emerged as a new generation of designable crystalline porous polymers for a wide array of clean-energy and environmental applications. In this contribution, we categorically review the merits and shortcomings of COF bulk powders, nanosheets, freestanding thin films/membranes, and membranes on porous supports in various separation processes, including separation of gases, pervaporation, organic solvent nanofiltration, water purification, radionuclide sequestration, and chiral separations, with particular reference to COF material pore size, host–guest interactions, stability, selectivity, and permeability. This review covers the fabrication strategies of nanosheets, films, and membranes, as well as performance parameters, and provides an overview of the separation landscape with COFs in relation to other porous polymers, while seeking to interpret the future research opportunities in this field.
Collapse
Affiliation(s)
- Saikat Das
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China;, ,
| | - Jie Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China;, ,
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China;, ,
| |
Collapse
|
27
|
Fang M, Montoro C, Semsarilar M. Metal and Covalent Organic Frameworks for Membrane Applications. MEMBRANES 2020; 10:E107. [PMID: 32455983 PMCID: PMC7281687 DOI: 10.3390/membranes10050107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Better and more efficient membranes are needed to face imminent and future scientific, technological and societal challenges. New materials endowed with enhanced properties are required for the preparation of such membranes. Metal and Covalent Organic Frameworks (MOFs and COFs) are a new class of crystalline porous materials with large surface area, tuneable pore size, structure, and functionality, making them a perfect candidate for membrane applications. In recent years an enormous number of articles have been published on the use of MOFs and COFs in preparation of membranes for various applications. This review gathers the work reported on the synthesis and preparation of membranes containing MOFs and COFs in the last 10 years. Here we give an overview on membranes and their use in separation technology, discussing the essential factors in their synthesis as well as their limitations. A full detailed summary of the preparation and characterization methods used for MOF and COF membranes is given. Finally, applications of these membranes in gas and liquid separation as well as fuel cells are discussed. This review is aimed at both experts in the field and newcomers, including students at both undergraduate and postgraduate levels, who would like to learn about preparation of membranes from crystalline porous materials.
Collapse
Affiliation(s)
| | | | - Mona Semsarilar
- Institut Européen des Membranes—IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
| |
Collapse
|
28
|
Sun H, Magnuson Z, He W, Zhang W, Vardhan H, Han X, He G, Ma S. PEG@ZIF-8/PVDF Nanocomposite Membrane for Efficient Pervaporation Desulfurization via a Layer-by-Layer Technology. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20664-20671. [PMID: 32227857 DOI: 10.1021/acsami.0c02513] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The desulfurization property of conventional mixed matrix membranes (MMMs) cannot meet the necessary demand due to particles aggregation and interface defects. Here, we put forward a layer-by-layer (LBL) approach to make a novel PEG@ZIF-8/poly(vinylidene difluoride)(PVDF) composite membrane for pervaporation desulfurization. In this way, a ZIF-8 layer is covered on the surface of the PVDF porous membrane via an in situ growth method. Then, a PEG layer is covered on the ZIF-8 layer by a casting method. Compared with pristine PEG membranes, the separation performance of the ZIF-8@PEG/PVDF nanocomposite membrane increased significantly. This can be attributed to the homogeneous ZIF-8 particle layer and better compatibility between the poly(ethylene glycol) (PEG) matrix and ZIF-8 particles. The membrane achieves a maximum total flux of 3.08 kg·m-2·h-1 at the third in situ growth cycles of ZIF-8 particles and a maximum sulfur enrichment factor of 7.6 at the sixth in situ growth cycles of ZIF-8 particles.
Collapse
Affiliation(s)
- Hexiang Sun
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zachary Magnuson
- Department of Chemistry, University of South Florida, 4202 E, Fowler Avenue, Tampa, Florida 33620, United States
| | - Wenwen He
- Department of Chemistry, University of South Florida, 4202 E, Fowler Avenue, Tampa, Florida 33620, United States
| | - Weijie Zhang
- Department of Chemistry, University of South Florida, 4202 E, Fowler Avenue, Tampa, Florida 33620, United States
| | - Harsh Vardhan
- Department of Chemistry, University of South Florida, 4202 E, Fowler Avenue, Tampa, Florida 33620, United States
| | - Xiaolong Han
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- Department of Chemistry, University of South Florida, 4202 E, Fowler Avenue, Tampa, Florida 33620, United States
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Shengqian Ma
- Department of Chemistry, University of South Florida, 4202 E, Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
29
|
Wang Z, Liu J, Shan H, Li G, Wang Z, Si Z, Cai D, Qin P. A polyvinyl alcohol‐based mixed matrix membrane with uniformly distributed Schiff base network‐1 for ethanol dehydration. J Appl Polym Sci 2020. [DOI: 10.1002/app.49308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhanbin Wang
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Jiahao Liu
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Houchao Shan
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Guozhen Li
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Ze Wang
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Zhihao Si
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Di Cai
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Peiyong Qin
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| |
Collapse
|
30
|
Facilitated transport membranes by incorporating self-exfoliated covalent organic nanosheets for CO2/CH4 separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
A highly selective sorption process in POSS-g-PDMS mixed matrix membranes for ethanol recovery via pervaporation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116238] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Zhou L, Luo X, Gao J, Liu G, Ma L, He Y, Huang Z, Jiang Y. Facile synthesis of covalent organic framework derived Fe-COFs composites as a peroxidase-mimicking artificial enzyme. NANOSCALE ADVANCES 2020; 2:1036-1039. [PMID: 36133031 PMCID: PMC9418288 DOI: 10.1039/d0na00025f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/31/2020] [Indexed: 05/23/2023]
Abstract
An artificial catalyst (Fe-COFs) with peroxidase-like activity was successfully synthesized at room temperature and applied to catalyze the reaction between TMB and H2O2. This catalytic system can be used not only to detect residual hydrogen peroxide (H2O2) in milk efficiently, but also to degrade rhodamine B (RhB) in waste water.
Collapse
Affiliation(s)
- Liya Zhou
- Hebei University of Technology China
| | | | - Jing Gao
- Hebei University of Technology China
| | | | - Li Ma
- Hebei University of Technology China
| | - Ying He
- Hebei University of Technology China
| | | | | |
Collapse
|
33
|
Jia C, Mi Y, Liu Z, Zhou W, Gao H, Zhang S, Lu R. Attapulgite modified with covalent organic frameworks as the sorbent in dispersive solid phase extraction for the determination of pyrethroids in environmental water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104522] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Covalent organic frameworks hybird membrane with optimized mass transport nanochannel for aromatic/aliphatic mixture pervaporation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Sharma R, Jain M. Removal of benzothiophenes from model diesel/jet oil fuel by using pervaporation process: Estimation of mass transfer properties of the different membranes and dynamic modeling of a scale-up batch process. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Wang G, Zhou T, Lei Y. Exploration of a novel triazine-based covalent organic framework for solid-phase extraction of antibiotics. RSC Adv 2020; 10:11557-11564. [PMID: 35496593 PMCID: PMC9050495 DOI: 10.1039/c9ra10846g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
A novel COF was synthesized, which has a similar structure to SNW-1 but different selectivity towards antibiotics.
Collapse
Affiliation(s)
- Guanhua Wang
- College of Veterinary Medicine
- South China Agricultural University
- Guangzhou 510642
- PR China
| | - Tong Zhou
- College of Veterinary Medicine
- South China Agricultural University
- Guangzhou 510642
- PR China
| | - Yongqian Lei
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
- Guangdong Engineering Technology Research Center of On-line Monitoring of Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangzhou
- China
| |
Collapse
|
37
|
Hou L, Song Y, Xiao Y, Wu R, Wang L. Ratiometric fluorescence detection of dipicolinic acid based on Microporous Ln/melamine-terephthaladehyde schiff base networks complex. Talanta 2019; 209:120534. [PMID: 31892026 DOI: 10.1016/j.talanta.2019.120534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/14/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022]
Abstract
Lanthanide-based fluorescence sensor in the detection of major Anthrax biomarker dipicolinic acid (DPA) is attracting wide attention. In this work, we proposed a new strategy for ratiometric fluorescence detection of DPA based on microporous Ln/melamine-terephthaladehyde Schiff base networks (Ln/MTSNW) complex for the first time. The microporous MTSNW was prepared by amine-aldehyde condensation between melamine and terephthaladehyde and presented lamellar and octahedral structure. Lanthanide ions, Eu3+ or Tb3+ were coordinated with N atoms of MTSNW to form Ln/MTSNW complex. The microporous Ln/MTSNW complex not only provided large surface area to improve the sensitivity of DPA detection, but also constructed ratiometric fluorescence sensors to eliminate environmental effects and instrument fluctuation. DPA was a highly efficient antenna molecule for Eu3+ and Tb3+ and transferred the energy to Eu3+ or Tb3+ to sensitize their fluorescence. The Ln/MTSNW complex were uniformly and stably dispersed in aqueous solution for DPA detection with a linear range from 15 nM to 7 μM and low detection limit of 5.2 nM for Eu/MTSNW and a linear range from 4 nM to 2.5 μM and low detection limit of 1.4 nM for Tb/MTSNW. Due to the simple preparation of Ln/MTSNW complex and low technical requirement, the ratiometric fluorescence DPA sensor based on Ln/MTSNW complex might show great potential in practical applications.
Collapse
Affiliation(s)
- Linli Hou
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China; Jiangxi Ji'an Hydrology Bureau, 3 Bamboo Lane Road, Ji'an, 343100, China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Yingjie Xiao
- Jiangxi Ji'an Hydrology Bureau, 3 Bamboo Lane Road, Ji'an, 343100, China
| | - Rong Wu
- Jiangxi Ji'an Hydrology Bureau, 3 Bamboo Lane Road, Ji'an, 343100, China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China.
| |
Collapse
|
38
|
Zhang Y, Jiang Z, Song J, Song J, Pan F, Zhang P, Cao X. Elevated Pervaporative Desulfurization Performance of Pebax-Ag+@MOFs Hybrid Membranes by Integrating Multiple Transport Mechanisms. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ye Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jing Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jian Song
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Peng Zhang
- Multi-discipline Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xingzhong Cao
- Multi-discipline Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Si Z, Cai D, Li S, Li G, Wang Z, Qin P. A high-efficiency diffusion process in carbonized ZIF-8 incorporated mixed matrix membrane for n-butanol recovery. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Li S, Li P, Si Z, Li G, Qin P, Tan T. An efficient method allowing for continuous preparation of PDMS/PVDF composite membrane. AIChE J 2019. [DOI: 10.1002/aic.16710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shufeng Li
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing China
| | - Pei Li
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing China
| | - Zhihao Si
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing China
| | - Guozhen Li
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing China
| | - Peiyong Qin
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing China
| | - Tianwei Tan
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing China
| |
Collapse
|
41
|
Si Z, Cai D, Li S, Zhang C, Qin P, Tan T. Carbonized ZIF-8 incorporated mixed matrix membrane for stable ABE recovery from fermentation broth. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
|
43
|
Pan F, Wang H, Li W, Zhang S, Sun J, Yang H, Wang M, Wang M, Zhou X, Liu X, Jiang Z. Constructing rapid diffusion pathways in ultrapermeable hybrid membranes by hierarchical porous nanotubes. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Yuan S, Li X, Zhu J, Zhang G, Van Puyvelde P, Van der Bruggen B. Covalent organic frameworks for membrane separation. Chem Soc Rev 2019; 48:2665-2681. [DOI: 10.1039/c8cs00919h] [Citation(s) in RCA: 455] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline porous materials, comprises periodically extended and covalently bound network structures.
Collapse
Affiliation(s)
- Shushan Yuan
- Institute of Materials Science and Technology
- Analysis and testing centre
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xin Li
- Department of Chemical Engineering
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Junyong Zhu
- Department of Chemical Engineering
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Gang Zhang
- Institute of Materials Science and Technology
- Analysis and testing centre
- Sichuan University
- Chengdu 610064
- P. R. China
| | | | | |
Collapse
|