1
|
Diepenbroek E, Mehta S, Borneman Z, Hempenius MA, Kooij ES, Nijmeijer K, de Beer S. Advances in Membrane Separation for Biomaterial Dewatering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4545-4566. [PMID: 38386509 PMCID: PMC10919095 DOI: 10.1021/acs.langmuir.3c03439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Biomaterials often contain large quantities of water (50-98%), and with the current transition to a more biobased economy, drying these materials will become increasingly important. Contrary to the standard, thermodynamically inefficient chemical and thermal drying methods, dewatering by membrane separation will provide a sustainable and efficient alternative. However, biomaterials can easily foul membrane surfaces, which is detrimental to the performance of current membrane separations. Improving the antifouling properties of such membranes is a key challenge. Other recent research has been dedicated to enhancing the permeate flux and selectivity. In this review, we present a comprehensive overview of the design requirements for and recent advances in dewatering of biomaterials using membranes. These recent developments offer a viable solution to the challenges of fouling and suboptimal performances. We focus on two emerging development strategies, which are the use of electric-field-assisted dewatering and surface functionalizations, in particular with hydrogels. Our overview concludes with a critical mention of the remaining challenges and possible research directions within these subfields.
Collapse
Affiliation(s)
- Esli Diepenbroek
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - Sarthak Mehta
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Zandrie Borneman
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Mark A. Hempenius
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - E. Stefan Kooij
- Physics
of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, 7500
AE Enschede, The
Netherlands
| | - Kitty Nijmeijer
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sissi de Beer
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
2
|
Chang H, Zhao H, Qu F, Yan Z, Liu N, Lu M, Liang Y, Lai B, Liang H. State-of-the-art insights on applications of hydrogel membranes in water and wastewater treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Jiang H, Liu S. Construction of self-healing polyethersulfone ultrafiltration membrane by cucurbit[8]uril hydrogel via RTIPS method and host-guest chemistry. CHEMOSPHERE 2023; 311:137079. [PMID: 36328320 DOI: 10.1016/j.chemosphere.2022.137079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
In this work, the self-healing polyethersulfone ultrafiltration membrane constructed by host-guest chemistry between cucurbit [8]uril (CB [8] is a family of macrocyclic compounds comprising 8 glycoluril units) and two guest molecules based on reverse thermally induced phase separation (RTIPS) method was developed, which had excellent self-healing performance, better mechanical properties, and high permeation flux and BSA rejection rate. The membrane autonomously restored it BSA rejection rate up to about 89% from rejection rate levels as low as 21% after damage. The observed self-healing performance were attributed to the swelling of pore-filled CB [8] hydrogel into the damage position, the molecular interdiffusion of the hydrogel chains, the strong hydrogen bond of the hydrogel chains and the host-guest interaction between CB [8] and two guest molecules (HEC-Np and PVA-MV). SEM morphologies illustrated that the prepared pore-filled membrane via the RTIPS method had homogeneous and porous skin surface and sponge-like cross-section, which imparted the prepared membranes with improved permeability and better mechanical properties. Properties of MR-CB [8] membranes, which varied with increased content of CB [8], were evaluated by permeability, water contact angle, thermogravimetric analysis (TGA), mechanical properties, FRR, scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle water showed that CB [8] hydrogel enhanced the surface hydrophilicity of the prepared membrane. TGA illustrated that the thermal stability improved with the increased content of CB [8]. The optimal pore-filled CB [8] hydrogel membrane (MR-CB [8]2) exhibited that the pure water flux reached 2100.5 L/m2 h, while the BSA rejection rate remained at 86.0%. The results of this work suggested pore-filled CB [8] hydrogel membrane was a more promising way to develop polyethersulfone ultrafiltration membranes with self-healing performance.
Collapse
Affiliation(s)
- Haotian Jiang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Shenghui Liu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| |
Collapse
|
4
|
Yu J, He Y, Wang Y, Li S, Tian S. Ethylenediamine-oxidized sodium alginate hydrogel cross-linked graphene oxide nanofiltration membrane with self-healing property for efficient dye separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Wang C, Guo Z, Wang C, Liu W, Yang X, Huo H, Cai Y, Geng Z, Su Z. High-performance self-healing composite ultrafiltration membrane based on multiple molecular dynamic interactions. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Lou J, Yang L, Wei T, Yuan J, Deng J. Synergistic effect of silicon‐containing groups on the self‐healing performance of polyurethanes based on disulfide bonds. J Appl Polym Sci 2022. [DOI: 10.1002/app.52954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiankun Lou
- College of Materials Science and Engineering Hunan University Changsha China
| | - Lide Yang
- College of Materials Science and Engineering Hunan University Changsha China
| | - Tao Wei
- College of Materials Science and Engineering Hunan University Changsha China
| | - Jianmin Yuan
- College of Materials Science and Engineering Hunan University Changsha China
| | - Jianru Deng
- College of Chemistry and Chemical Engineering Hunan University Changsha China
| |
Collapse
|
7
|
Zhou C, Zhao X, Xiong Y, Tang Y, Ma X, Tao Q, Sun C, Xu W. A review of etching methods of MXene and applications of MXene conductive hydrogels. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Kim ES, Park TY, Choi KH, Choi WJ, Suh DH. Tunable cross‐linked copolymer networks for improvement of physical performance. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eun Seon Kim
- Department of Chemical engineering Hanyang University Seoul South Korea
- Chemical Materials Solutions Center Korea Research Institute of Chemical Technology (KRICT) Daejeon South Korea
| | - Tai Young Park
- Department of Chemical engineering Hanyang University Seoul South Korea
| | - Kyoung Hwan Choi
- Department of Chemical engineering Hanyang University Seoul South Korea
| | - Woo Jin Choi
- Chemical Materials Solutions Center Korea Research Institute of Chemical Technology (KRICT) Daejeon South Korea
| | - Dong Hack Suh
- Department of Chemical engineering Hanyang University Seoul South Korea
| |
Collapse
|
9
|
Karoyo AH, Wilson LD. A Review on the Design and Hydration Properties of Natural Polymer-Based Hydrogels. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1095. [PMID: 33652859 PMCID: PMC7956345 DOI: 10.3390/ma14051095] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 01/02/2023]
Abstract
Hydrogels are hydrophilic 3D networks that are able to ingest large amounts of water or biological fluids, and are potential candidates for biosensors, drug delivery vectors, energy harvester devices, and carriers or matrices for cells in tissue engineering. Natural polymers, e.g., cellulose, chitosan and starch, have excellent properties that afford fabrication of advanced hydrogel materials for biomedical applications: biodegradability, biocompatibility, non-toxicity, hydrophilicity, thermal and chemical stability, and the high capacity for swelling induced by facile synthetic modification, among other physicochemical properties. Hydrogels require variable time to reach an equilibrium swelling due to the variable diffusion rates of water sorption, capillary action, and other modalities. In this study, the nature, transport kinetics, and the role of water in the formation and structural stability of various types of hydrogels comprised of natural polymers are reviewed. Since water is an integral part of hydrogels that constitute a substantive portion of its composition, there is a need to obtain an improved understanding of the role of hydration in the structure, degree of swelling and the mechanical stability of such biomaterial hydrogels. The capacity of the polymer chains to swell in an aqueous solvent can be expressed by the rubber elasticity theory and other thermodynamic contributions; whereas the rate of water diffusion can be driven either by concentration gradient or chemical potential. An overview of fabrication strategies for various types of hydrogels is presented as well as their responsiveness to external stimuli, along with their potential utility in diverse and novel applications. This review aims to shed light on the role of hydration to the structure and function of hydrogels. In turn, this review will further contribute to the development of advanced materials, such as "injectable hydrogels" and super-adsorbents for applications in the field of environmental science and biomedicine.
Collapse
Affiliation(s)
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
| |
Collapse
|
10
|
Idumah CI, Odera SR. Recent advancement in self-healing graphene polymer nanocomposites, shape memory, and coating materials. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1725816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Faculty of Engineering, Department of Polymer and Textile Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
- Enhanced Polymer Research Group, EnPro, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - S. R. Odera
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| |
Collapse
|
11
|
Getachew BA, Guo W, Zhong M, Kim JH. Asymmetric hydrogel-composite membranes with improved water permeability and self-healing property. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|