1
|
Shi D, Liu T. Versatile Gas-Transfer Membrane in Water and Wastewater Treatment: Principles, Opportunities, and Challenges. ACS ENVIRONMENTAL AU 2025; 5:152-164. [PMID: 40125285 PMCID: PMC11926753 DOI: 10.1021/acsenvironau.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 03/25/2025]
Abstract
Technologies using liquid-transfer membranes, such as microfiltration, ultrafiltration, and reverse osmosis, have been widely applied in water and wastewater treatment. In the last few decades, gas-transfer membranes have been introduced in various fields to facilitate mass transfer, in which gaseous compounds permeate through membrane pores driven by gradients in chemical concentration or potential. A notable knowledge gap exists among researchers working on these emerging gas-transfer membranes as they approach this subject from different angles and areas of expertise (e.g., material science versus microbiology). This review explores the versatile applications of gas-transfer membranes in water and wastewater treatment, categorizing them into three primary types according to the function of membranes: water vapor transferring, gaseous reactant supplying, and gaseous compound extraction. For each type, the principles, evolution, and potential for further development were elaborated. Moreover, this review highlights the potential knowledge transfer between different fields, as insights from one type of gas-transfer membrane could potentially benefit another. Despite their technical innovations, these processes still face challenges in practical operation, such as membrane fouling and wetting. We advocate for research focusing on more practical and sustainable membranes and careful consideration of these emerging membrane technologies in specific scenarios. The current practicality and maturity of these emerging processes in water and wastewater treatment are described by the Technology Readiness Level (TRL) framework. Particularly, ongoing fundamental progress in membranes and engineering is expected to continue fueling the future development of these technologies.
Collapse
Affiliation(s)
- Danting Shi
- Department of Civil and Environmental
Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, PR China
| | - Tao Liu
- Department of Civil and Environmental
Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, PR China
| |
Collapse
|
2
|
Sun Y. UiO-66 Metal-Organic Framework Membranes: Structural Engineering for Separation Applications. MEMBRANES 2025; 15:8. [PMID: 39852249 PMCID: PMC11767111 DOI: 10.3390/membranes15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/12/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025]
Abstract
Metal-organic frameworks (MOFs) have been recognized as promising materials for membrane-based separation technologies due to their exceptional porosity, structural tunability, and chemical stability. This review presents a comprehensive discussion of the advancements in structure engineering and design strategies that have been employed to optimize UiO-66 membranes for enhanced separation performance. Various synthesis methods for UiO-66 membranes are explored, with a focus on modulated approaches that incorporate different modulators to fine-tune nucleation rates and crystallization processes. The influence of preferred orientation, membrane thickness, pore size, pore surface chemistry, and hierarchical structures on the separation performance is concluded. By providing a consolidated overview of current research efforts and future directions in UiO-66 membrane development, this review aims to inspire further advancements in the field of separation technologies.
Collapse
Affiliation(s)
- Yanwei Sun
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
3
|
Xing Q, Xu X, Li H, Cui Z, Chu B, Xie N, Wang Z, Bai P, Guo X, Lyu J. Fabrication Methods of Continuous Pure Metal-Organic Framework Membranes and Films: A Review. Molecules 2024; 29:3885. [PMID: 39202964 PMCID: PMC11356928 DOI: 10.3390/molecules29163885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Metal-organic frameworks (MOFs) have drawn intensive attention as a class of highly porous, crystalline materials with significant potential in various applications due to their tunable porosity, large internal surface areas, and high crystallinity. This paper comprehensively reviews the fabrication methods of pure MOF membranes and films, including in situ solvothermal synthesis, secondary growth, electrochemical deposition, counter diffusion growth, liquid phase epitaxy and solvent-free synthesis in the category of different MOF families with specific metal species, including Zn-based, Cu-based, Zr-based, Al-based, Ni-based, and Ti-based MOFs.
Collapse
Affiliation(s)
- Qinglei Xing
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Xiangyou Xu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Haoqian Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Zheng Cui
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Binrui Chu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Nihao Xie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Ziying Wang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
- Department of Catalytic Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Peng Bai
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Department of Catalytic Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xianghai Guo
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Ocean Observation Technology of Ministry of Natural Resources, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jiafei Lyu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Zhan X, Gao K, Jia Y, Deng W, Liu N, Guo X, Li H, Li J. Enhanced Desulfurization Performance of ZIF-8/PEG MMMs: Effect of ZIF-8 Particle Size. MEMBRANES 2023; 13:membranes13050515. [PMID: 37233576 DOI: 10.3390/membranes13050515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Constructing efficient and continuous transport pathways in membranes is a promising and challenging way to achieve the desired performance in the pervaporation process. The incorporation of various metal-organic frameworks (MOFs) into polymer membranes provided selective and fast transport channels and enhanced the separation performance of polymeric membranes. Particle size and surface properties are strongly related to the random distribution and possible agglomeration of MOFs particles, which may lead to poor connectivity between adjacent MOFs-based nanoparticles and result in low-efficiency molecular transport in the membrane. In this work, ZIF-8 particles with different particle sizes were physically filled into PEG to fabricate mixed matrix membranes (MMMs) for desulfurization via pervaporation. The micro-structures and physi-/chemical properties of different ZIF-8 particles, along with their corresponding MMMs, were systematically characterized by SEM, FT-IR, XRD, BET, etc. It was found that ZIF-8 with different particle sizes showed similar crystalline structures and surface areas, while larger ZIF-8 particles possessed more micro-pores and fewer meso-/macro-pores than did the smaller particles. ZIF-8 showed preferential adsorption for thiophene rather than n-heptane molecules, and the diffusion coefficient of thiophene was larger than that of thiophene in ZIF-8, based on molecular simulation. PEG MMMs with larger ZIF-8 particles showed a higher sulfur enrichment factor, but a lower permeation flux than that found with smaller particles. This might be ascribed to the fact that larger ZIF-8 particles provided more and longer selective transport channels in one single particle. Moreover, the number of ZIF-8-L particles in MMMs was smaller than the number of smaller ones with the same particle loading, which might weaken the connectivity between adjacent ZIF-8-L nanoparticles and result in low-efficiency molecular transport in the membrane. Moreover, the surface area available for mass transport was smaller for MMMs with ZIF-8-L particles due to the smaller specific surface area of the ZIF-8-L particles, which might also result in lower permeability in ZIF-8-L/PEG MMMs. The ZIF-8-L/PEG MMMs exhibited enhanced pervaporation performance, with a sulfur enrichment factor of 22.5 and a permeation flux of 183.2 g/(m-2·h-1), increasing by 57% and 389% compared with the results for pure PEG membrane, respectively. The effects of ZIF-8 loading, feed temperature, and concentration on desulfurization performance were also studied. This work might provide some new insights into the effect of particle size on desulfurization performance and the transport mechanism in MMMs.
Collapse
Affiliation(s)
- Xia Zhan
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Kaixiang Gao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yucheng Jia
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Wen Deng
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Ning Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xuebin Guo
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Hehe Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jiding Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Tarkhani M, Mousavi SA, Asadollahi M, Bastani D, Pourasad F. Investigating the effect of zirconium‐based and titanium‐based metal–organic frameworks nanoparticles on the performance of polysulfone hollow fiber mixed matrix membrane for dialysis application. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Mehdi Tarkhani
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Seyyed Abbas Mousavi
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Mahdieh Asadollahi
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Dariush Bastani
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Fatemeh Pourasad
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| |
Collapse
|
6
|
Zhan X, Ge R, Yao S, Lu J, Sun X, Li J. Enhanced pervaporation performance of PEG membranes with synergistic effect of cross-linked PEG and porous MOF-508a. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Xu X, Hartanto Y, Zheng J, Luis P. Recent Advances in Continuous MOF Membranes for Gas Separation and Pervaporation. MEMBRANES 2022; 12:1205. [PMID: 36557112 PMCID: PMC9785445 DOI: 10.3390/membranes12121205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs), a sub-group of porous crystalline materials, have been receiving increasing attention for gas separation and pervaporation because of their high thermal and chemical stability, narrow window sizes, as well as tuneable structural, physical, and chemical properties. In this review, we comprehensively discuss developments in the formation of continuous MOF membranes for gas separation and pervaporation. Additionally, the application performance of continuous MOF membranes in gas separation and pervaporation are analysed. Lastly, some perspectives for the future application of continuous MOF membranes for gas separation and pervaporation are given.
Collapse
Affiliation(s)
- Xiao Xu
- Materials and Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research and Innovation Centre for Process Engineering (ReCIPE), Place Sainte Barbe 2, bte L5.02.02, 1348 Louvain-la-Neuve, Belgium
| | - Yusak Hartanto
- Materials and Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research and Innovation Centre for Process Engineering (ReCIPE), Place Sainte Barbe 2, bte L5.02.02, 1348 Louvain-la-Neuve, Belgium
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing 401331, China
| | - Patricia Luis
- Materials and Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research and Innovation Centre for Process Engineering (ReCIPE), Place Sainte Barbe 2, bte L5.02.02, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Du B, Luo Y, Wu F, Liu G, Li J, Xue W. Continuous amino-functionalized University of Oslo 66 membranes as efficacious polysulfide barriers for lithium-sulfur batteries. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Zhan X, Zhao X, Ge R, Gao Z, Wang L, Sun X, Li J. Constructing high-efficiency transport pathways via incorporating DP-POSS into PEG membranes for pervaporative desulfurization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Emerging membranes for separation of organic solvent mixtures by pervaporation or vapor permeation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Yan J, Ji T, Sun Y, Meng S, Wang C, Liu Y. Room temperature fabrication of oriented Zr-MOF membrane with superior gas selectivity with zirconium-oxo cluster source. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Effect of MoS2 Yolk-Shell Nanostructure on the Thiophene Separation Performance of PEG Membrane. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/5780884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Constructing facilitated transport based on π-complexation has been drawing more and more attention in mixed matrix membranes (MMMs) for pervaporative desulfurization. Herein, a unique molybdenum disulfide (MoS2) yolk-shell nanostructure (MYNS) was prepared and incorporated into the polyethylene glycol (PEG) matrix to fabricate MMMs for model gasoline desulfurization by PV. Moreover, the effects of MYNS content, feed sulfur concentration, and feed temperature on the performance of PEG/MYNS MMMs were evaluated. It was found that there is good interfacial compatibility between the MYNS filler and the PEG matrix, and the resultant MMMs show enhanced swelling resistance against thiophene. The PV results revealed that the as-fabricated MMMs are thiophene-selective, and their desulfurization performance in the pervaporative removal of thiophene from n-octane is remarkably evaluated due to the addition of MYNS. The MMMs display the highest sulfur enrichment factor of 4.02 with an associated permeation flux of 2587 g·m−2·h−1 with the MYNS loading of 3 wt. % when carrying out in an n-octane and thiophene (500 μg·g−1) mixture at 343 K. Furthermore, a consistent increment in the permeation flux accompanied with a continuous reduction in the enrichment factor was observed with increasing the feed sulfur concentration and feed temperature. This work may offer great potential for practical gasoline desulfurization applications.
Collapse
|
13
|
Barghi B, Jürisoo M, Volokhova M, Seinberg L, Reile I, Mikli V, Niidu A. Process Optimization for Catalytic Oxidation of Dibenzothiophene over UiO-66-NH 2 by Using a Response Surface Methodology. ACS OMEGA 2022; 7:16288-16297. [PMID: 35601300 PMCID: PMC9118427 DOI: 10.1021/acsomega.1c05965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
This research investigates the catalytic performance of a metal-organic framework (MOF) with a functionalized ligand-UiO-66-NH2-in the oxidative desulfurization of dibenzothiophene (DBT) in n-dodecane as a model fuel mixture (MFM). The solvothermally prepared catalyst was characterized by XRD, FTIR, 1H NMR, SEM, TGA, and MP-AES analyses. A response surface methodology was employed for the experiment design and variable optimization using central composite design (CCD). The effects of reaction conditions on DBT removal efficiency, including temperature (X 1), oxidant agent over sulfur (O/S) mass ratio (X 2), and catalyst over sulfur (C/S) mass ratio (X 3), were assessed. Optimal process conditions for sulfur removal were obtained when the temperature, O/S mass ratio, and C/S mass ratio were 72.6 °C, 1.62 mg/mg, and 12.1 mg/mg, respectively. Under these conditions, 89.7% of DBT was removed from the reaction mixture with a composite desirability score of 0.938. From the results, the temperature has the most significant effect on the oxidative desulfurization reaction. The model F values gave evidence that the quadratic model was well-fitted. The reusability of the MOF catalyst in the ODS reaction was tested and demonstrated a gradual loss of activity over four runs.
Collapse
Affiliation(s)
- Bijan Barghi
- Virumaa
College, School of Engineering, Tallinn
University of Technology, Järveküla 75, 30322 Kohtla-Järve, Estonia
| | - Martin Jürisoo
- Virumaa
College, School of Engineering, Tallinn
University of Technology, Järveküla 75, 30322 Kohtla-Järve, Estonia
| | - Maria Volokhova
- National
Institute of Chemical Physics and Biophysics, Akadeemia 23, 12618 Tallinn, Estonia
| | - Liis Seinberg
- National
Institute of Chemical Physics and Biophysics, Akadeemia 23, 12618 Tallinn, Estonia
| | - Indrek Reile
- National
Institute of Chemical Physics and Biophysics, Akadeemia 23, 12618 Tallinn, Estonia
| | - Valdek Mikli
- Department
of Chemistry and Materials Technology, School of Engineering, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn, Estonia
| | - Allan Niidu
- Virumaa
College, School of Engineering, Tallinn
University of Technology, Järveküla 75, 30322 Kohtla-Järve, Estonia
| |
Collapse
|
14
|
Lv J, Cui Y, Yang J, Li L, Zhou X, Lu J, He G. Inorganic Pillar Center-Facilitated Counterdiffusion Synthesis for Highly H 2 Perm-Selective KAUST-7 Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4297-4306. [PMID: 35016503 DOI: 10.1021/acsami.1c21077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fluorinated metal-organic framework materials (NbOFFIVE-1-Ni, also referred to as KAUST-7) have attracted widespread attention because of their high chemical stability and thermal stability, outstanding tolerance with water and H2S, and high CO2-adsorption selectivity over H2 and CH4. KAUST-7 was expected to be a new membrane material candidate for H2/CO2 separation because of the hindered permeation of CO2 resulting from the interaction between CO2 and (NbOF5)2- of the KAUST-7 framework. A highly H2 perm-selective KAUST-7 membrane was first achieved using a novel strategy of inorganic pillar center-facilitated counterdiffusion (IPCFCD) proposed by us. The IPCFCD method not only effectively avoided the corrosion of hydrofluoric acid to α-Al2O3 tubes in the process of preparing KAUST-7 membranes, but also better reduced grain boundary defects because of the faster nucleation rate and resultant high crystallinity. The KAUST-7 membrane exhibited a high H2/CO2 separation factor (SF) of 27.30 for the 1:1 H2/CO2 binary gas mixture with a high H2 permeance of 5.30 × 10-7 mol m-2 s-1 Pa-1 under ambient conditions and a slight decrease of the H2/CO2 SF with increasing operation temperature and presence of steam. This study highlighted the importance of pre-synthesizing inorganic pillar centers (NiNbOF5 intermediate) and the innovation of a membrane formation process for synthesizing polycrystalline KAUST-7 membranes. Most important of all, our study provided a novel approach to overcome the challenge in fabricating metal-organic framework membranes containing corrosive reactants for the corresponding supports.
Collapse
Affiliation(s)
- Jinyin Lv
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yanwen Cui
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianhua Yang
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liangqing Li
- Laboratory of Functional Materials, School of Chemistry and Chemical Engineering, Huangshan University, Huangshan 245041, P. R. China
| | - Xuerong Zhou
- Shandong Applied Research Center for Gold Nanotechnology (Au-SDARC), School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jinming Lu
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
15
|
Xu J, Zhang B, Lu Y, Wang L, Tao W, Teng X, Ning W, Zhang Z. Adsorption desulfurization performance of PdO/SiO 2@graphene oxide hybrid aerogel: Influence of graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126680. [PMID: 34332481 DOI: 10.1016/j.jhazmat.2021.126680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 05/26/2023]
Abstract
Preparation of PdO/SiO2@graphene oxide (GO) hybrid aerogels were carried out sol-gel method combined with atmospheric drying technology to study their adsorption performance for thiophenics and compared with PdO/SiO2. Scanning electron microscope (SEM), N2 adsorption-desorption isotherms, X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and fourier transformation infrared spectroscopy (FT-IR) for samples were performed. The adsorption performance of PdO/SiO2@GO for thiophene were better than that of PdO/SiO2, attributed to that incorporation of GO increased the specific surface area and the Pd incorporation rate, where Pd2+ ions acted as the π-complexation and sulfur-metal (SM) bond adsorption active centers, as well as GO adsorbed thiophene by the π-π stacking effect. The adsorption capacities of PdO/SiO2@GO-1.0 for thiophene (TH), benzothiophene (BT) and dibenzothiophene (DBT) were 8.89, 9.3 and 12.6 mg-S/gads, respectively. The addition of GO in aerogels could improve the inhibition effect of toluene, cyclohexene and pyridine while decreased the inhibition effect of MTBE and H2O for the adsorption of thiophene, due to the π-π stacking effect and the hydrophobicity of GO, respectively. The adsorption process was spontaneous and exothermic, be well fitted by the apparent second-order kinetic model and dominated by chemical interaction. Pd/SiO2@GO-1.0 had a good solvent elution regeneration performance.
Collapse
Affiliation(s)
- Jiacheng Xu
- Laboratory of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Bo Zhang
- Laboratory of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China.
| | - Yongkang Lu
- Laboratory of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Leigang Wang
- Laboratory of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Wanyi Tao
- Laboratory of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Xiao Teng
- Laboratory of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Wensheng Ning
- Laboratory of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Zekai Zhang
- Laboratory of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| |
Collapse
|
16
|
Li J, Zhu M, Dai B. An amino functionalized zirconium metal organic framework as a catalyst for oxidative desulfurization. NEW J CHEM 2022. [DOI: 10.1039/d2nj01375d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excellent activity of UiO-66-NH2 may be attributed to the synergistic effect of ZrIV–OH and –NH2.
Collapse
Affiliation(s)
- Juan Li
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, P. R. China
- College of Chemistry & Chemical Engineering Yantai University, Yantai, Shandong 264010, P. R. China
| | - Mingyuan Zhu
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, P. R. China
- College of Chemistry & Chemical Engineering Yantai University, Yantai, Shandong 264010, P. R. China
| | - Bin Dai
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, P. R. China
| |
Collapse
|
17
|
|
18
|
Li H, Fu M, Wang SQ, Zheng X, Zhao M, Yang F, Tang CY, Dong Y. Stable Zr-Based Metal-Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14917-14927. [PMID: 34661395 DOI: 10.1021/acs.est.1c06105] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Treatment of hypersaline waters is a critical environmental challenge. Pervaporation (PV) desalination is a promising technique to address this challenge, but current PV membranes still suffer from challenging issues such as low flux and insufficient stability. Herein, we propose in situ nanoseeding followed by a secondary growth strategy to fabricate a high-quality stable metal-organic framework (MOF) thin membrane (UiO-66) for high-performance pervaporation desalination of hypersaline waters. To address the issue of membrane quality, a TiO2 nano-interlayer was introduced on coarse mullite substrates to favor the growth of a UiO-66 nanoseed layer, on which a well-intergrown UiO-66 selective membrane layer with thickness as low as 1 μm was finally produced via subsequent secondary growth. The PV separation performance for hypersaline waters was systematically investigated at different salt concentrations, feed temperatures, and long-term operation in different extreme chemical environments. Besides having nearly complete rejection (99.9%), the UiO-66 membrane exhibited high flux (37.4 L·m-2·h-1) for hypersaline waters, outperforming current existing zeolite and MOF membranes. The membrane also demonstrated superior long-term operational stability under various harsh environments (hypersaline, hot, and acidic/alkaline feed water) and mild fouling behavior. The rational design proposed in this study is not only applicable for the development of a high-quality UiO-66 membrane enabling harsh hypersaline water treatment but can also be potentially extended to other next-generation nanoporous MOF membranes for more environmental applications.
Collapse
Affiliation(s)
- Haotian Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mao Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shi-Qiang Wang
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
|
20
|
Desulfurization of a Model Fuel using Pervaporation Membranes Containing Zn-MOFs. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02472-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Fluorinated MOF-808 with various modulators to fabricate high-performance hybrid membranes with enhanced hydrophobicity for organic-organic pervaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Mishra MK, Jain M. Removal of sulfur‐containing compounds from Fluid Catalytic Cracking unit (FCC) gasoline by pervaporation process: Effects of variations in feed characteristics and mass transfer properties of the membrane. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mukesh K. Mishra
- Department of Applied Chemistry Delhi Technological University New Delhi India
| | - Manish Jain
- Department of Applied Chemistry Delhi Technological University New Delhi India
| |
Collapse
|
23
|
Zhong L, Ding J, Qian J, Hong M. Unconventional inorganic precursors determine the growth of metal-organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213804] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Novel pervaporation mixed matrix membranes based on polyphenylene isophtalamide modified by metal–organic framework UiO-66(NH2)-EDTA for highly efficient methanol isolation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Sustainable composite pervaporation membranes based on sodium alginate modified by metal organic frameworks for dehydration of isopropanol. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Abdali A, Mahmoudian M, Eskandarabadi SM, Nozad E, Enayati M. Elimination of dibenzothiophene from n-hexane by nano-composite membrane containing Cu-MOF in a pervaporation process. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02087-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Rong R, Sun Y, Ji T, Liu Y. Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via tertiary solvothermal growth. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Constructing high-efficiency facilitated transport pathways via embedding heterostructured Ag+@MOF/GO laminates into membranes for pervaporative desulfurization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Ji T, Sun Y, Liu Y, Li M, Wang F, Liu L, He G, Liu Y. Facile In Situ Hydrothermal Synthesis of Layered Zirconium Phenylphosphonate Molecular Sieve Membranes with Optimized Microstructure and Superb H 2/CO 2 Selectivity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15320-15327. [PMID: 32160461 DOI: 10.1021/acsami.0c02789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Layered molecular sieve membranes containing uniform interlayer galleries have offered unprecedented opportunities to reach a performance far beyond the Robeson upper bound line. In this study, we took the initiative to prepare layered zirconium phenylphosphonate (ZrPP) molecular sieve membranes with optimized microstructure on tetragonal zirconia (t-ZrO2) buffer layer-modified porous α-Al2O3 substrates by facile in situ hydrothermal growth. Relying on the 3.2 Å-sized gallery height and preferential CO2 adsorption behavior, prepared ZrPP membranes showed exceptional H2/CO2 selectivity (>100) as well as considerable H2 permeability. Furthermore, extraordinary thermal, mechanical, and chemical stability of ZrPP membranes made them potentially attractive for long-term operations under harsh conditions.
Collapse
Affiliation(s)
- Taotao Ji
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yanwei Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116024, China
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Liangliang Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
30
|
Sharma R, Jain M. Removal of benzothiophenes from model diesel/jet oil fuel by using pervaporation process: Estimation of mass transfer properties of the different membranes and dynamic modeling of a scale-up batch process. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Sun Y, Song C, Guo X, Liu Y. Concurrent Manipulation of Out-of-Plane and Regional In-Plane Orientations of NH 2-UiO-66 Membranes with Significantly Reduced Anisotropic Grain Boundary and Superior H 2/CO 2 Separation Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4494-4500. [PMID: 31873001 DOI: 10.1021/acsami.9b18804] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Preferred orientation has proven to exert a significant impact on the gas separation performance of metal-organic framework membranes. Nevertheless, realizing three-dimensional orientation control remains a challenging issue. In this study, well-intergrown NH2-UiO-66 membranes with both (111) out-of-plane and regional in-plane orientations were prepared by combining oriented deposition of seeds and solvothermal epitaxial growth. Dynamic air-liquid interface-assisted self-assembly method was employed to organize uniform octahedral-shaped NH2-UiO-66 seeds into closely packed monolayers with (111) out-of-plane and regional in-plane orientations, whereas the use of ZrS2 as the zirconium precursor during the solvothermal epitaxial growth was found indispensible for sealing the intercrystalline gaps while preserving the preferred orientation inherited from seed layers. In addition, compared with solvothermal heating, employing microwave heating led to poor intergrowth between neighboring NH2-UiO-66 crystals because of a lower dielectric loss factor of the reaction medium. Gas permeation results indicated that the prepared NH2-UiO-66 membranes exhibited H2/CO2 selectivity up to 5.5 times higher than their counterparts with random and/or mere out-of-plane orientations as well as H2 permeability 14.5 times higher than NH2-MIL-125(Ti) membranes with mere out-of-plane orientation under similar operating conditions.
Collapse
Affiliation(s)
- Yanwei Sun
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Centre for Energy Research, School of Chemical Engineering , Dalian University of Technology , Dalian 116023 , PR China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Centre for Energy Research, School of Chemical Engineering , Dalian University of Technology , Dalian 116023 , PR China
- EMS Energy Institute, Departments of Energy and Mineral Engineering and of Chemical Engineering . The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Centre for Energy Research, School of Chemical Engineering , Dalian University of Technology , Dalian 116023 , PR China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Centre for Energy Research, School of Chemical Engineering , Dalian University of Technology , Dalian 116023 , PR China
| |
Collapse
|
32
|
Abstract
AbstractMetal-organic frameworks (MOFs) have emerged as a class of promising membrane materials. UiO-66 is a prototypical and stable MOF material with a number of analogues. In this article, we review five approaches for fabricating UiO-66 polycrystalline membranes including in situ synthesis, secondary synthesis, biphase synthesis, gas-phase deposition and electrochemical deposition, as well as their applications in gas separation, pervaporation, nanofiltration and ion separation. On this basis, we propose possible methods for scalable synthesis of UiO-66 membranes and their potential separation applications in the future.
Collapse
|
33
|
Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Nian P, Ma C, Liu H, Qiu J, Zhang X. High-Performance Co-Based ZIF-67 Tubular Membrane Achieved by ZnO-Induced Synthesis for Highly Efficient Pervaporation Separation of Methanol/Methyl tert-Butyl Ether Mixture. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pei Nian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Changchang Ma
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haiou Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiongfu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
35
|
|
36
|
Du L, Yang J, Xu X. Highly Enhanced Adsorption of Dimethyl Disulfide from Model Oil on MOF-199/Attapulgite Composites. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b04277] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Du
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jingyi Yang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xinru Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
37
|
Zhang J, Chen J, Peng S, Peng S, Zhang Z, Tong Y, Miller PW, Yan XP. Emerging porous materials in confined spaces: from chromatographic applications to flow chemistry. Chem Soc Rev 2019; 48:2566-2595. [DOI: 10.1039/c8cs00657a] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Porous materials confined within capillary columns/microfluidic devices are discussed, and progress in chromatographic and membrane separations and catalysis is reviewed.
Collapse
Affiliation(s)
- Jianyong Zhang
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Junxing Chen
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Sheng Peng
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Shuyin Peng
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Zizhe Zhang
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Yexiang Tong
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | | | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology
- International Joint Laboratory on Food Safety
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
| |
Collapse
|